Kinetic Visualization
 All Classes Functions Variables Pages
Public Member Functions | Static Public Member Functions
Clustering Class Reference

List of all members.

Public Member Functions

 Clustering (void)
 ~Clustering (void)

Static Public Member Functions

static void Eigen (glm::mat2 &rvec, glm::vec2 &rval, glm::mat2 covariance)
static void SVD (glm::vec2 &rw, glm::mat2 &ru, glm::mat2 &rvt, glm::mat2 covariance)
static float getDensity (glm::vec2 pos, glm::vec2 mean, glm::mat2 covariance)
static glm::mat2 CalculateCovariance (glm::vec2 radii, float phi)
static void kMeans (glm::vec2 **x, glm::vec2 *m, float *numComponents, float **g, int N, int K, int Iterations)
static void DoClustering (glm::vec2 *m, glm::mat2 *c, glm::vec2 *x, int N, int K)
static glm::vec4 * CalculateTFTexture (glm::vec2 *m, glm::mat2 *covariance, glm::vec4 *color)

Constructor & Destructor Documentation

Clustering::Clustering ( void  )

Standard Konstruktor Clustering

Clustering::~Clustering ( void  )

Standard Dekonstruktor Clustering


Member Function Documentation

glm::mat2 Clustering::CalculateCovariance ( glm::vec2  radii,
float  phi 
)
static

Method calculates Covariance Matrix

Parameters:
radii... radiii
phi... phi
Returns:
Covariance Matrix
glm::vec4 * Clustering::CalculateTFTexture ( glm::vec2 *  m,
glm::mat2 *  covariance,
glm::vec4 *  color 
)
static

Draw Cluster on TF

Parameters:
m... Meanvalues
c... Covariance Matrix
x... Color
void Clustering::DoClustering ( glm::vec2 *  m,
glm::mat2 *  c,
glm::vec2 *  x,
int  N,
int  K 
)
static

Performs Clustering

Parameters:
m... Meanvalues
c... Covariance Matrix
x... Data vector
k... Number of Clusters
void Clustering::Eigen ( glm::mat2 &  rvec,
glm::vec2 &  rval,
glm::mat2  covariance 
)
static

Calculates Eigenvectors and values

Parameters:
rvec... Eigenvector
rval... Eigenvalues
covariance... Covariance Matrix
float Clustering::getDensity ( glm::vec2  pos,
glm::vec2  mean,
glm::mat2  covariance 
)
static

Returns Density of sample ponts

Parameters:
pos... Position to estimate Density
mean... mean value of cluster
covariance... covariance of cluster
void Clustering::kMeans ( glm::vec2 **  x,
glm::vec2 *  m,
float *  numComponents,
float **  g,
int  N,
int  K,
int  Iterations 
)
static

Performs kMeans Clustering

Parameters:
x... Data vector
x... Data vector
m... Meanvalues
numComponents... Number of Samples of each Clusters
g... Properbility
K... Number of Clusters
N... Number of Samples
Iterations...Number of Iterations
void Clustering::SVD ( glm::vec2 &  rw,
glm::mat2 &  ru,
glm::mat2 &  rvt,
glm::mat2  covariance 
)
static

Performs Singluar Value Decomposition

Parameters:
rw... rw values
ru... rv matrix
rvt... rvt matrix
covariance... Covariance Matrix

The documentation for this class was generated from the following files: