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Fig. 1. Dynamic Volume Lines depicts sets of volumes (a) in an overview visualization, i.e., an interactive nonlinearly scaled histogram
heatmap, which encodes intensity frequencies, or (b) in a detailed view, as interactive nonlinearly scaled 1D Hilbert line plots. Based
on the individual 1D Hilbert line plots, functional boxplots (c) are generated on demand. The scaling widget (d) depicts the ensemble
variation on each level of detail.

Abstract— The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just
subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D
volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the
Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D
volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive
visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming
in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the
volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations.
Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in
a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from
tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed
tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume
Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of
reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

Index Terms—Ensemble data, comparative visualization, visual analysis, Hilbert curve, nonlinear scaling, X-ray computed tomography

1 INTRODUCTION AND MOTIVATION

Synthetic foams are widely used, for example, as packaging, as thermal
insulating materials, or even as lightweight components [19]. The me-
chanical behavior of foamed polymers is mainly influenced by the foam
density, cell size and diameter, foam hardness, and the deformation rate.
For closed-cell and open-cell foams, the determination of the foam
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module is important. For this purpose, the spatial distribution of the
matrix material in the cell walls must be accurately described [10].

A major challenge in three-dimensional material characterization
with conventional industrial 3D X-ray computed tomography (XCT)
systems are low densities and thin cell walls, especially at low physical
resolutions. One method that overcomes these challenges is Talbot-Lau
grating interferometer XCT (TLGI-XCT) [37]. It is a non-destructive
testing method, which fully delivers 3D volume information of the
scanned specimen at a high resolution to precisely capture external
and internal structures (e.g., cracks) in a single scan. TLGI-XCT is
one of the most important X-ray technology innovations in the past ten
years [28]. This method provides three complementary modalities in
one scan of the specimen: (1) the attenuation contrast (AC), (2) the
differential phase contrast (DPC), and (3) the dark-field contrast (DFC).

Currently, it is common practice to reconstruct the data of the three
modalities separately, without simultaneously using the present and
instructive complementary information. To reconstruct the data from
the three modalities, the conventional filtered back-projection algorithm
by Feldkamp, Davis, and Kress (FDK) is used [6]. This reconstruc-
tion algorithm is well suited for XCT data from the AC modality, as
it is a fast and accurate method. However, for the DPC and DFC
modalities, the FDK reconstruction is not optimal because the prior
knowledge and the inherent physical effects of the different modalities

are not considered [17, 33]. Experts in the field of computed tomog-
raphy reconstruction are therefore developing new algorithms based
on appropriate mathematical models. These correspond to the physical
characteristics of the DFC and DPC modalities in order to achieve
satisfying reconstruction results with regard to conventional methods.

The domain specialists compare the results of the different recon-
struction algorithms and their parameterizations with each other and
with a reference reconstruction. Regions in the volume with a high
ensemble variation of the intensities (e.g., feature edges on interfaces)
are of great interest to the experts, as the behavior of the reconstruc-
tion algorithm can be deduced if changing specific parameters. The
comparison is typically done visually. It is based on 2D gray value
slices through the volumes arranged side by side. Experts perform this
comparison on a case-by-case basis. They try to determine promising
algorithms and suitable parameters, for instance, by checking for noise
and artifact suppression. The intensity differences between the various
volumetric reconstructions are typically rather small. Therefore it is
difficult for an expert to judge whether a particular algorithm or param-
eter set provides better results (e.g., sharper edges) than another one.
This problem gets even worse if several or even many different recon-
struction results of an algorithm are compared (e.g., due to parameter
variations).

Due to a close collaboration with reconstruction specialists, we
were able to analyze their workflow and identify the following tasks
when comparing many volumes in specific regions of minor intensity
differences:

Task 1: Compare several reconstruction volumes with each other

Task 2: Identify interesting spatial regions based on high local intensity
variations

Task 3: Reveal repeating patterns in the spatial domain, which are of
high variance among all ensemble members

Task 4: Find the most suitable volume in the ensemble

To address domain-specific requirements, we introduce Dynamic
Volume Lines for the interactive visual analysis and comparison of 3D
volumes using nonlinearly scaled 1D Hilbert line plots (see Figure 1).
We build upon the work of Demir et al. [3], who also use the Hilbert
linearization to analyze 3D data. As space-filling curve the Hilbert
curve traverses the entire 3D volume. For the line plot the space-
filling curve is straightened along the horizontal axis. On the vertical
axis the intensities at the specific volume positions are shown. We
extend the approach of Demir et al. by an adaptive, automatic, and
dynamic nonlinear scaling of the horizontal axis, which allows the user
to focus on interesting regions in the volumes. The nonlinear scaling
highlights regions of high variation in the ensemble and optionally hides
uninteresting background regions. Abstracting and reformatting 3D
volumes as line plots is chosen because the domain experts are familiar
with line graphs, which they use on a daily basis. The workflow of
Dynamic Volume Lines starts with the extraction of a region of interest
(ROI), which is for each volume to be analyzed at the same position
and of the same size (see Figure 2a). A Hilbert space-filling curve
for the extracted ensemble volumes is generated by mapping voxel
coordinates and the corresponding intensities in 3D to 1D Hilbert
indices (see Figure 2b). The nonlinear scaling of a Hilbert line plot
is built by summing up the local ensemble variations to formulate a
cumulative importance-function (see Figure 2c), which serves as basis
for the interactive visualization techniques (see Figure 2d–f). Our main
contributions are:

• Design and development of Dynamic Volume Lines, to compare
ensembles of 3D volumes, including the following key features:

– Nonlinear scaling of the 1D Hilbert line plot, which is built from
a cumulative importance-function (see Section 3.2)

– Interactive nonlinearly scaled histogram heatmap, which encodes
the intensity frequencies (see Section 3.3.1)
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Fig. 2. The Dynamic Volume Lines workflow: (a) extraction of interesting
regions, (b) generation of a space-filling Hilbert curve, (c) nonlinear scal-
ing of the Hilbert line plots, (d) interactive nonlinearly scaled histogram
heatmap, (e) interactive nonlinearly scaled 1D Hilbert line plots, (f) and
interactive scaling widget.

– Interactive nonlinearly scaled 1D Hilbert line plots of the individ-
ual volumes in the ensemble (see Section 3.3.2)

– Interactive scaling widget, which illustrates the locally varying
scaling factor (see Section 3.3.3)

• Evaluation of the tool based on two case studies from the XCT
domain

In the subsequent Section 2 we review the related work on compar-
ative and ensemble visualization. In Section 3 we explain Dynamic
Volume Lines, which includes the Hilbert curve generation, the non-
linear scaling based on a cumulative importance-function, and the
interactive visualization techniques. Section 4 describes the data acqui-
sition and the used datasets. Section 5 presents the evaluation of the
developed tool based on two case studies. We conclude and point out
potential future work in Section 6.

2 RELATED WORK

The related work is mainly in the areas of comparative and ensemble
visualization, but also in the fields of visual parameter space analysis
and interactive visual analysis.

Gleicher et al. [9] provide a taxonomy to group visual designs into
one of three basic categories: juxtaposition, superposition, and ex-
plicit encoding. In the work of Malik et al. [21], slices from different
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Fig. 1. Dynamic Volume Lines depicts sets of volumes (a) in an overview visualization, i.e., an interactive nonlinearly scaled histogram
heatmap, which encodes intensity frequencies, or (b) in a detailed view, as interactive nonlinearly scaled 1D Hilbert line plots. Based
on the individual 1D Hilbert line plots, functional boxplots (c) are generated on demand. The scaling widget (d) depicts the ensemble
variation on each level of detail.

Abstract— The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just
subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D
volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the
Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D
volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive
visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming
in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the
volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations.
Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in
a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from
tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed
tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume
Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of
reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

Index Terms—Ensemble data, comparative visualization, visual analysis, Hilbert curve, nonlinear scaling, X-ray computed tomography

1 INTRODUCTION AND MOTIVATION

Synthetic foams are widely used, for example, as packaging, as thermal
insulating materials, or even as lightweight components [19]. The me-
chanical behavior of foamed polymers is mainly influenced by the foam
density, cell size and diameter, foam hardness, and the deformation rate.
For closed-cell and open-cell foams, the determination of the foam
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module is important. For this purpose, the spatial distribution of the
matrix material in the cell walls must be accurately described [10].

A major challenge in three-dimensional material characterization
with conventional industrial 3D X-ray computed tomography (XCT)
systems are low densities and thin cell walls, especially at low physical
resolutions. One method that overcomes these challenges is Talbot-Lau
grating interferometer XCT (TLGI-XCT) [37]. It is a non-destructive
testing method, which fully delivers 3D volume information of the
scanned specimen at a high resolution to precisely capture external
and internal structures (e.g., cracks) in a single scan. TLGI-XCT is
one of the most important X-ray technology innovations in the past ten
years [28]. This method provides three complementary modalities in
one scan of the specimen: (1) the attenuation contrast (AC), (2) the
differential phase contrast (DPC), and (3) the dark-field contrast (DFC).

Currently, it is common practice to reconstruct the data of the three
modalities separately, without simultaneously using the present and
instructive complementary information. To reconstruct the data from
the three modalities, the conventional filtered back-projection algorithm
by Feldkamp, Davis, and Kress (FDK) is used [6]. This reconstruc-
tion algorithm is well suited for XCT data from the AC modality, as
it is a fast and accurate method. However, for the DPC and DFC
modalities, the FDK reconstruction is not optimal because the prior
knowledge and the inherent physical effects of the different modalities

are not considered [17, 33]. Experts in the field of computed tomog-
raphy reconstruction are therefore developing new algorithms based
on appropriate mathematical models. These correspond to the physical
characteristics of the DFC and DPC modalities in order to achieve
satisfying reconstruction results with regard to conventional methods.

The domain specialists compare the results of the different recon-
struction algorithms and their parameterizations with each other and
with a reference reconstruction. Regions in the volume with a high
ensemble variation of the intensities (e.g., feature edges on interfaces)
are of great interest to the experts, as the behavior of the reconstruc-
tion algorithm can be deduced if changing specific parameters. The
comparison is typically done visually. It is based on 2D gray value
slices through the volumes arranged side by side. Experts perform this
comparison on a case-by-case basis. They try to determine promising
algorithms and suitable parameters, for instance, by checking for noise
and artifact suppression. The intensity differences between the various
volumetric reconstructions are typically rather small. Therefore it is
difficult for an expert to judge whether a particular algorithm or param-
eter set provides better results (e.g., sharper edges) than another one.
This problem gets even worse if several or even many different recon-
struction results of an algorithm are compared (e.g., due to parameter
variations).

Due to a close collaboration with reconstruction specialists, we
were able to analyze their workflow and identify the following tasks
when comparing many volumes in specific regions of minor intensity
differences:

Task 1: Compare several reconstruction volumes with each other

Task 2: Identify interesting spatial regions based on high local intensity
variations

Task 3: Reveal repeating patterns in the spatial domain, which are of
high variance among all ensemble members

Task 4: Find the most suitable volume in the ensemble

To address domain-specific requirements, we introduce Dynamic
Volume Lines for the interactive visual analysis and comparison of 3D
volumes using nonlinearly scaled 1D Hilbert line plots (see Figure 1).
We build upon the work of Demir et al. [3], who also use the Hilbert
linearization to analyze 3D data. As space-filling curve the Hilbert
curve traverses the entire 3D volume. For the line plot the space-
filling curve is straightened along the horizontal axis. On the vertical
axis the intensities at the specific volume positions are shown. We
extend the approach of Demir et al. by an adaptive, automatic, and
dynamic nonlinear scaling of the horizontal axis, which allows the user
to focus on interesting regions in the volumes. The nonlinear scaling
highlights regions of high variation in the ensemble and optionally hides
uninteresting background regions. Abstracting and reformatting 3D
volumes as line plots is chosen because the domain experts are familiar
with line graphs, which they use on a daily basis. The workflow of
Dynamic Volume Lines starts with the extraction of a region of interest
(ROI), which is for each volume to be analyzed at the same position
and of the same size (see Figure 2a). A Hilbert space-filling curve
for the extracted ensemble volumes is generated by mapping voxel
coordinates and the corresponding intensities in 3D to 1D Hilbert
indices (see Figure 2b). The nonlinear scaling of a Hilbert line plot
is built by summing up the local ensemble variations to formulate a
cumulative importance-function (see Figure 2c), which serves as basis
for the interactive visualization techniques (see Figure 2d–f). Our main
contributions are:

• Design and development of Dynamic Volume Lines, to compare
ensembles of 3D volumes, including the following key features:

– Nonlinear scaling of the 1D Hilbert line plot, which is built from
a cumulative importance-function (see Section 3.2)

– Interactive nonlinearly scaled histogram heatmap, which encodes
the intensity frequencies (see Section 3.3.1)
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Fig. 2. The Dynamic Volume Lines workflow: (a) extraction of interesting
regions, (b) generation of a space-filling Hilbert curve, (c) nonlinear scal-
ing of the Hilbert line plots, (d) interactive nonlinearly scaled histogram
heatmap, (e) interactive nonlinearly scaled 1D Hilbert line plots, (f) and
interactive scaling widget.

– Interactive nonlinearly scaled 1D Hilbert line plots of the individ-
ual volumes in the ensemble (see Section 3.3.2)

– Interactive scaling widget, which illustrates the locally varying
scaling factor (see Section 3.3.3)

• Evaluation of the tool based on two case studies from the XCT
domain

In the subsequent Section 2 we review the related work on compar-
ative and ensemble visualization. In Section 3 we explain Dynamic
Volume Lines, which includes the Hilbert curve generation, the non-
linear scaling based on a cumulative importance-function, and the
interactive visualization techniques. Section 4 describes the data acqui-
sition and the used datasets. Section 5 presents the evaluation of the
developed tool based on two case studies. We conclude and point out
potential future work in Section 6.

2 RELATED WORK

The related work is mainly in the areas of comparative and ensemble
visualization, but also in the fields of visual parameter space analysis
and interactive visual analysis.

Gleicher et al. [9] provide a taxonomy to group visual designs into
one of three basic categories: juxtaposition, superposition, and ex-
plicit encoding. In the work of Malik et al. [21], slices from different
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volumes are compared in a hexagonal arrangement. This visual rep-
resentation works only for a rather small number of datasets to be
compared. Schmidt et al. [35] present a tool for the comparative visual
analysis of 3D meshes, which enables the simultaneous comparison
of several meshes and allows for the interactive exploration of their
differences. In an earlier work [34], they present a method for visualiz-
ing differences and similarities in large sets of images. The technique
preserves contextual information, but also allows the user to perform
a detailed analysis of subtle variations. Based on magnetic resonance
cartilage-imaging techniques, Mlejnek et al. [25] propose 3D glyphs,
called Profile Flags, for the probing of sets of underlying curve data.
Weissenböck et al. [42] introduce a system to evaluate the porosity
in 3D volumes. They provide 2D slice views and 3D renderings to
compare the different pore segmentation results due to varying seg-
mentation parameters. Many of the ensembles investigated in these
works result from analyzing the parameter space of some algorithm,
for which Sedlmair et al. [36] present a conceptual framework to guide
and systematize research endeavors.

Ensemble visualization often uses statistical summaries for the com-
parison of many similar datasets. Ensemble-Vis by Potter et al. [30] is a
framework consisting of an interactively linked overview and statistical
displays for the discovery and evaluation of simulated meteorology
outcomes. Jarema et al. [16] provide a visual-analysis user-interface
with multiple linked views to support the comparative exploration of
2D vector-valued ensemble fields. Fröhler et al. [7] present an inter-
active tool for exploring and analyzing the parameter space of multi-
channel segmentation algorithms and the corresponding ensemble of
segmentation results. Several works have been published, which embed
descriptive statistics measures such as minimum, median, and maxi-
mum in functional boxplots [39], contour boxplots [43], and curved
boxplots [24]. Genton et al. [8] developed surface boxplots for the
visualization and exploratory analysis of samples of images to detect
potential outliers. They use the notion of volume depth to order the im-
ages interpreted as hightfields. Raj et al. [31] examine the effectiveness
of contour boxplots in the medical domain of brain atlas analysis. They
extend contour boxplots to 3D to visualize and interact with ensembles
of 3D isosurfaces. Demir et al. [4] determine the most central shape
from a given set, to quantify a region-wise centrality, and to compute
the locally most representative shape. Konyha et al. [18] and Matkovic
et al. [22] focus on the interactive visual analysis of ensembles of curves
called families of curves or families of surfaces using data aggregation
and attribute derivation. Piringer et al. [29] extend the work on feature-
preserving downsampling of 2D functions. They discuss a design study
of an interactive approach for the comparative visual analysis of 2D
function ensembles.

In the context of visual analysis, the state of the art report by Heinzl
and Stappen [15] closes a gap between visual computing and material
science. Torsney-Weir et al. [40] propose Sliceplorer to visually ex-
amine multi-dimensional continuous scalar functions with 1D slices.
Their technique combines the benefits of topological views, i.e., screen
space efficiency, with those of slices, that are a close resemblance of the
underlying function. Another work of Demir et al. [3], presents Multi-
Charts, an interface to visually analyze 3D scalar ensemble fields by
linearizing the 3D data points along a space-filling curve. Our approach
is similar to Multi-Charts, as we also use the Hilbert space-filling curve
to linearize 3D volumes and represent the volumes as 1D line plots.
Demir et al. represent the individual ensemble members as multiple
stacked and combined bar and line charts at different levels of detail.
For analyzing such regions the user has to zoom in and out. This leads
to a loss of context. A significant difference in our work is the com-
putation of a nonlinear scaling of the x-axis based on local ensemble
variations. The nonlinear scaling allows us to depict all 3D volumes as
1D line plots, which can be presented in one visualization. As a result,
uninteresting regions (with low ensemble variance) are compressed in
the line plots, and interesting regions (with high ensemble variance) are
expanded. Thereby, we can optimally use the available screen space
and no zooming is necessary in the first place, as we provide insight
into the interesting regions from the initial overview state. The indi-
vidual line plots of the corresponding 3D volumes can be aggregated

using functional boxplots. Thus, we provide a statistical overview of
the ensemble. In addition, the scaling widget indicates the nonlinear
scaling of the data. Finally, we support an importance-driven selection
by defining ranges based on a cumulative importance-function.

3 DYNAMIC VOLUME LINES

In this section we explain the generation of the Hilbert curve based on
the 3D voxel intensities and compare the line plots of the Hilbert curve
with the line plots of the scan line curve (see Section 3.1). Furthermore,
we describe the nonlinear scaling of the Hilbert line plots based on
local ensemble variations (see Section 3.2).

The basic motivation of Dynamic Volume Lines is to linearize 3D
volumes along a space-filling curve. The resulting line plots are a
familiar representation to engineers. Without occlusion many volumes
can be compared through their line plots. A comparison of many vol-
umes in their original 3D space that differ only slightly from each other
turns out to be difficult with traditional methods. For example, a direct
volume visualization of many datasets is plagued by severe clutter and
occlusion problems. This effect is further reinforced by the increasing
number of volumes to compare. The same is true for 2D slice views. Ar-
ranging two or four slice views of different volumes side by side would
be feasible, but with an increasing number of volumes to compare, e.g.,
six, it is nearly impossible to find regions where the volumes differ. For
example: if individual voxels differ by 5000 intensities, this difference
is difficult to perceive as brightness difference, even for an expert. For
a line plot in a range of 65000 intensities on the y-axis, this amplitude
drop would be 7% and thus easier to recognize as positional difference.
A positional encoding is much more effective than color coding to indi-
cate subtle differences. Comparing intensities is much easier through
line plots, in contrast to having first to match them in two or more 2D
(or 3D) views and then comparing their color encoding. One could
apply statistical aggregation to determine a volume where the voxels
contain the local ensemble variances. But even in such a reduced data,
rendering is affected by clutter and occlusion. For example, to make
differences visible in the interior of the volume, the opacity must be
set to a low value. However, larger differences are then only vaguely
recognizable. Small differences will be lost. In addition, statistical
aggregation volumes provide only a summary or overview and would
require additional detailed visualizations to compare specific members
in a region of interest. In our approach the differences between the
individual members can easily be inspected by comparing line plots.

A drawback of linearizing volumes is the loss of spatial coherency.
Among the many possibilities of space-filling curves we decided for
one which is preserving the spatial coherency as much as possible. The
wigglyness of the Hilbert curve ensures that very often neighboring
voxels in the 3D volumes are mapped to nearby locations in the straight-
ened Hilbert line plot. We compare the spatial coherence of the Hilbert
curve with respect to another simple volume linearization, i.e., the scan
line curve where the volume is traversed slice by slice and scan line by
scan line within a slice. Switching scan lines or slices introduce large
spatial incoherences. Such incoherencies appear with Hilbert curves as
well, but much less.

3.1 Hilbert Space-Filling Curve Generation
In general, with space-filling curves, n-dimensional regular grids can
be completely traversed and the grid points can be brought into a one-
dimensional linear order. In this sense volumes are three-dimensional
regular grids. There are many different space-filling curves such as the
Hilbert curve, the Peano curve, or the Z-curve. An obvious approach to
linearize the intensities of a 3D volume is to traverse the voxels in z-,
y-, and x-axis order along a scan line curve, line by line and slice by
slice (see Figure 3a). The disadvantage of this approach is that there are
large jumps in the scan line curve between the last voxel of the previous
row and the first voxel of the next row and the last voxel of the previous
slice and the first voxel of the current slice, respectively. In contrast,
the Hilbert space-filling curve traverses every point of a square, a cube,
or more generally, an n-dimensional hypercube, by preserving locality
much better. Points close to each other in the n-dimensional space
are very often close in their order along the Hilbert curve and vice
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Fig. 3. (a) shows the scan line curve of a 3D volume dataset by traversing
the voxels along their appearance. The blue dots mark a large jump
due to a line change and the red dots mark a large jumps due to a slice
change. (b) depicts the Hilbert curve of order one (initial seed curve).
(c–d) illustrate the individual steps to generate a Hilbert curve of order
two in 2D space. (e) shows the Hilbert curve of order three.
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Fig. 4. Difference between the scan line curve and the Hilbert curve due
to large jumps and different locality preservation. The six datasets of the
artificial specimen (see Section 4.2) are represented by color-coded line
plots (from light green to blue). The line plots are based on (a) the scan
line curve and (b) on the Hilbert curve.

versa [11]. This results in fewer large jumps. Therefore in this work,
we focus on the Hilbert curve, as it preserves the locality best [26].

In the following we describe the generation of the space-filling
Hilbert curve exemplarily in 2D space [13]. Consider the initial seed
curve defined on a 2×2 grid as shown in Figure 3b. It is called order 1
Hilbert curve. Based on an order k Hilbert curve defined on a 2k ×2k

grid, we define the order k+1 Hilbert curve on a 2k+1 × 2k+1 grid
according to four steps (see Figures 3c–d):

1. Place a copy of the curve in the lower right cell and rotate it 90°
counter-clockwise.

2. Place a copy of the curve in the lower left cell and rotate it 90°
clockwise.

3. Place a copy of the curve in each of the upper cells.
4. Connect the curves with each other.

The resulting space-filling curve visits every voxel exactly once and
assigns it a scalar index resulting from the traversal order (Hilbert
index). For example, Figures 3b, 3c(4), and 3e show the Hilbert
curves of order one, two, and three. Figure 2b (on the right) shows the
Hilbert curve of order one in 3D space.

In the case of Dynamic Volume Lines, all 3D volume datasets are
linearized using the implementation of Hamilton and Rau-Chaplin [14].
It generates a Hilbert space-filling curve where the volumes do not need
to have the same number of voxels along the x-, y-, and z-axis. The
resolution along the individual axes also need not be a power of two.
Figure 4 illustrates the difference between linearizing along the Hilbert
curve and the scan line curve. It depicts the six volumes of the artificial

specimen (see Section 4), each represented by a color-coded line plot
(from light green to blue). The scan line plots in Figure 4a fluctuate
more, due to less spatial coherence, as compared to the Hilbert line
plots (in Figure 4b).

3.2 Nonlinear Scaling of the Hilbert Line Plots
When generating the Hilbert curve for a dataset of 16×16×16 voxels
in size, 4096 Hilbert indices are created. Currently the horizontal
screen resolution of a standard PC monitor is typically between 2000
and 3000 pixels. If one wants to display all the 4096 Hilbert indices
as points in a 1D Hilbert line plot on the monitor, it turns out, that the
horizontal screen resolution is not sufficient to assign each Hilbert index
to its own pixel column. This problem becomes even more severe with
increasing volume size. Linearizing a volume reduces it to a simple
line plot, but with a tremendous horizontal resolution, i.e., number of
voxels. This requires automatic scaling along the horizontal axis so that
important regions get the screen space they need. Unimportant regions
like background can be drastically reduced in their screen space or even
removed. To counteract the problem of the limited screen space, we
apply a nonlinear scaling to the Hilbert line plot. Since the domain
experts are interested in those regions of the dataset where the variation
of the intensities is high, we compute the maximum local ensemble
variation Vh for every Hilbert index as follows:

V h = max
∀m∈Mh

Intensityh(m)− min
∀m∈Mh

Intensityh(m) (1)

m defines an ensemble member of a local ensemble Mh at a discrete
Hilbert index h, Intensityh defines the intensity at Hilbert index h for
member m.

Inspired by the work of Mindek et al. [23] and Lindow et al. [20],
we formulate the discrete local importance-function fl based on the
maximum local ensemble variation Vh:

fl(h) =
(

Vh

maxVh

)p
(2)

To be able to filter for a specific importance-value, we do a normal-
ization by the maximally occurring local ensemble variation. To in-
fluence the nonlinear scaling, we introduce an exponent p, which can
be adapted by the user. Setting this parameter to zero means equal
importance for all Hilbert indices, setting it higher than zero increases
the importance-value for Hilbert indices with a high variance in the
ensemble. Exponent p can be adapted by the user to fine-tune the
importance-value according to the individual application scenario. By
summing the local importance-function values, we define the cumula-
tive importance-function fc as follows:

fc(h) =
h

∑
i=0

fl(i) (3)

The cumulative importance-function values serve as a nonlinear map-
ping to compress the distances between the Hilbert indices (on the
x-axis). Figure 2c illustrates the calculation of the nonlinear mapping.
Figure 5 illustrates the effect of nonlinearly scaling the Hilbert line
plots. The regions indicated with red in Figure 5b are compressed (re-
spectively uncompressed in Figure 5a) by the nonlinear scaling because
of the low ensemble variation in these regions. In addition, we allow the
user to set a threshold for intensities that are not of interest (e.g., areas
of air in the dataset). For these background areas (see Figure 6) fl is
fixed to a value of 0.025. This value ensures that the background areas
are still sufficiently visible, but at the same time occupy little screen
space. By increasing the parameter p, the width of the background
regions can be adjusted.

3.3 Visualization Techniques
Dynamic Volume Lines provides multiple linked views and follows the
visual information-seeking mantra by Ben Shneiderman, “overview
first, zoom and filter, then details on demand” [38]. Two charts, one
with nonlinear scaling and one with constant scaling, are arranged on
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volumes are compared in a hexagonal arrangement. This visual rep-
resentation works only for a rather small number of datasets to be
compared. Schmidt et al. [35] present a tool for the comparative visual
analysis of 3D meshes, which enables the simultaneous comparison
of several meshes and allows for the interactive exploration of their
differences. In an earlier work [34], they present a method for visualiz-
ing differences and similarities in large sets of images. The technique
preserves contextual information, but also allows the user to perform
a detailed analysis of subtle variations. Based on magnetic resonance
cartilage-imaging techniques, Mlejnek et al. [25] propose 3D glyphs,
called Profile Flags, for the probing of sets of underlying curve data.
Weissenböck et al. [42] introduce a system to evaluate the porosity
in 3D volumes. They provide 2D slice views and 3D renderings to
compare the different pore segmentation results due to varying seg-
mentation parameters. Many of the ensembles investigated in these
works result from analyzing the parameter space of some algorithm,
for which Sedlmair et al. [36] present a conceptual framework to guide
and systematize research endeavors.

Ensemble visualization often uses statistical summaries for the com-
parison of many similar datasets. Ensemble-Vis by Potter et al. [30] is a
framework consisting of an interactively linked overview and statistical
displays for the discovery and evaluation of simulated meteorology
outcomes. Jarema et al. [16] provide a visual-analysis user-interface
with multiple linked views to support the comparative exploration of
2D vector-valued ensemble fields. Fröhler et al. [7] present an inter-
active tool for exploring and analyzing the parameter space of multi-
channel segmentation algorithms and the corresponding ensemble of
segmentation results. Several works have been published, which embed
descriptive statistics measures such as minimum, median, and maxi-
mum in functional boxplots [39], contour boxplots [43], and curved
boxplots [24]. Genton et al. [8] developed surface boxplots for the
visualization and exploratory analysis of samples of images to detect
potential outliers. They use the notion of volume depth to order the im-
ages interpreted as hightfields. Raj et al. [31] examine the effectiveness
of contour boxplots in the medical domain of brain atlas analysis. They
extend contour boxplots to 3D to visualize and interact with ensembles
of 3D isosurfaces. Demir et al. [4] determine the most central shape
from a given set, to quantify a region-wise centrality, and to compute
the locally most representative shape. Konyha et al. [18] and Matkovic
et al. [22] focus on the interactive visual analysis of ensembles of curves
called families of curves or families of surfaces using data aggregation
and attribute derivation. Piringer et al. [29] extend the work on feature-
preserving downsampling of 2D functions. They discuss a design study
of an interactive approach for the comparative visual analysis of 2D
function ensembles.

In the context of visual analysis, the state of the art report by Heinzl
and Stappen [15] closes a gap between visual computing and material
science. Torsney-Weir et al. [40] propose Sliceplorer to visually ex-
amine multi-dimensional continuous scalar functions with 1D slices.
Their technique combines the benefits of topological views, i.e., screen
space efficiency, with those of slices, that are a close resemblance of the
underlying function. Another work of Demir et al. [3], presents Multi-
Charts, an interface to visually analyze 3D scalar ensemble fields by
linearizing the 3D data points along a space-filling curve. Our approach
is similar to Multi-Charts, as we also use the Hilbert space-filling curve
to linearize 3D volumes and represent the volumes as 1D line plots.
Demir et al. represent the individual ensemble members as multiple
stacked and combined bar and line charts at different levels of detail.
For analyzing such regions the user has to zoom in and out. This leads
to a loss of context. A significant difference in our work is the com-
putation of a nonlinear scaling of the x-axis based on local ensemble
variations. The nonlinear scaling allows us to depict all 3D volumes as
1D line plots, which can be presented in one visualization. As a result,
uninteresting regions (with low ensemble variance) are compressed in
the line plots, and interesting regions (with high ensemble variance) are
expanded. Thereby, we can optimally use the available screen space
and no zooming is necessary in the first place, as we provide insight
into the interesting regions from the initial overview state. The indi-
vidual line plots of the corresponding 3D volumes can be aggregated

using functional boxplots. Thus, we provide a statistical overview of
the ensemble. In addition, the scaling widget indicates the nonlinear
scaling of the data. Finally, we support an importance-driven selection
by defining ranges based on a cumulative importance-function.

3 DYNAMIC VOLUME LINES

In this section we explain the generation of the Hilbert curve based on
the 3D voxel intensities and compare the line plots of the Hilbert curve
with the line plots of the scan line curve (see Section 3.1). Furthermore,
we describe the nonlinear scaling of the Hilbert line plots based on
local ensemble variations (see Section 3.2).

The basic motivation of Dynamic Volume Lines is to linearize 3D
volumes along a space-filling curve. The resulting line plots are a
familiar representation to engineers. Without occlusion many volumes
can be compared through their line plots. A comparison of many vol-
umes in their original 3D space that differ only slightly from each other
turns out to be difficult with traditional methods. For example, a direct
volume visualization of many datasets is plagued by severe clutter and
occlusion problems. This effect is further reinforced by the increasing
number of volumes to compare. The same is true for 2D slice views. Ar-
ranging two or four slice views of different volumes side by side would
be feasible, but with an increasing number of volumes to compare, e.g.,
six, it is nearly impossible to find regions where the volumes differ. For
example: if individual voxels differ by 5000 intensities, this difference
is difficult to perceive as brightness difference, even for an expert. For
a line plot in a range of 65000 intensities on the y-axis, this amplitude
drop would be 7% and thus easier to recognize as positional difference.
A positional encoding is much more effective than color coding to indi-
cate subtle differences. Comparing intensities is much easier through
line plots, in contrast to having first to match them in two or more 2D
(or 3D) views and then comparing their color encoding. One could
apply statistical aggregation to determine a volume where the voxels
contain the local ensemble variances. But even in such a reduced data,
rendering is affected by clutter and occlusion. For example, to make
differences visible in the interior of the volume, the opacity must be
set to a low value. However, larger differences are then only vaguely
recognizable. Small differences will be lost. In addition, statistical
aggregation volumes provide only a summary or overview and would
require additional detailed visualizations to compare specific members
in a region of interest. In our approach the differences between the
individual members can easily be inspected by comparing line plots.

A drawback of linearizing volumes is the loss of spatial coherency.
Among the many possibilities of space-filling curves we decided for
one which is preserving the spatial coherency as much as possible. The
wigglyness of the Hilbert curve ensures that very often neighboring
voxels in the 3D volumes are mapped to nearby locations in the straight-
ened Hilbert line plot. We compare the spatial coherence of the Hilbert
curve with respect to another simple volume linearization, i.e., the scan
line curve where the volume is traversed slice by slice and scan line by
scan line within a slice. Switching scan lines or slices introduce large
spatial incoherences. Such incoherencies appear with Hilbert curves as
well, but much less.

3.1 Hilbert Space-Filling Curve Generation
In general, with space-filling curves, n-dimensional regular grids can
be completely traversed and the grid points can be brought into a one-
dimensional linear order. In this sense volumes are three-dimensional
regular grids. There are many different space-filling curves such as the
Hilbert curve, the Peano curve, or the Z-curve. An obvious approach to
linearize the intensities of a 3D volume is to traverse the voxels in z-,
y-, and x-axis order along a scan line curve, line by line and slice by
slice (see Figure 3a). The disadvantage of this approach is that there are
large jumps in the scan line curve between the last voxel of the previous
row and the first voxel of the next row and the last voxel of the previous
slice and the first voxel of the current slice, respectively. In contrast,
the Hilbert space-filling curve traverses every point of a square, a cube,
or more generally, an n-dimensional hypercube, by preserving locality
much better. Points close to each other in the n-dimensional space
are very often close in their order along the Hilbert curve and vice
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Fig. 3. (a) shows the scan line curve of a 3D volume dataset by traversing
the voxels along their appearance. The blue dots mark a large jump
due to a line change and the red dots mark a large jumps due to a slice
change. (b) depicts the Hilbert curve of order one (initial seed curve).
(c–d) illustrate the individual steps to generate a Hilbert curve of order
two in 2D space. (e) shows the Hilbert curve of order three.
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Fig. 4. Difference between the scan line curve and the Hilbert curve due
to large jumps and different locality preservation. The six datasets of the
artificial specimen (see Section 4.2) are represented by color-coded line
plots (from light green to blue). The line plots are based on (a) the scan
line curve and (b) on the Hilbert curve.

versa [11]. This results in fewer large jumps. Therefore in this work,
we focus on the Hilbert curve, as it preserves the locality best [26].

In the following we describe the generation of the space-filling
Hilbert curve exemplarily in 2D space [13]. Consider the initial seed
curve defined on a 2×2 grid as shown in Figure 3b. It is called order 1
Hilbert curve. Based on an order k Hilbert curve defined on a 2k ×2k

grid, we define the order k+1 Hilbert curve on a 2k+1 × 2k+1 grid
according to four steps (see Figures 3c–d):

1. Place a copy of the curve in the lower right cell and rotate it 90°
counter-clockwise.

2. Place a copy of the curve in the lower left cell and rotate it 90°
clockwise.

3. Place a copy of the curve in each of the upper cells.
4. Connect the curves with each other.

The resulting space-filling curve visits every voxel exactly once and
assigns it a scalar index resulting from the traversal order (Hilbert
index). For example, Figures 3b, 3c(4), and 3e show the Hilbert
curves of order one, two, and three. Figure 2b (on the right) shows the
Hilbert curve of order one in 3D space.

In the case of Dynamic Volume Lines, all 3D volume datasets are
linearized using the implementation of Hamilton and Rau-Chaplin [14].
It generates a Hilbert space-filling curve where the volumes do not need
to have the same number of voxels along the x-, y-, and z-axis. The
resolution along the individual axes also need not be a power of two.
Figure 4 illustrates the difference between linearizing along the Hilbert
curve and the scan line curve. It depicts the six volumes of the artificial

specimen (see Section 4), each represented by a color-coded line plot
(from light green to blue). The scan line plots in Figure 4a fluctuate
more, due to less spatial coherence, as compared to the Hilbert line
plots (in Figure 4b).

3.2 Nonlinear Scaling of the Hilbert Line Plots
When generating the Hilbert curve for a dataset of 16×16×16 voxels
in size, 4096 Hilbert indices are created. Currently the horizontal
screen resolution of a standard PC monitor is typically between 2000
and 3000 pixels. If one wants to display all the 4096 Hilbert indices
as points in a 1D Hilbert line plot on the monitor, it turns out, that the
horizontal screen resolution is not sufficient to assign each Hilbert index
to its own pixel column. This problem becomes even more severe with
increasing volume size. Linearizing a volume reduces it to a simple
line plot, but with a tremendous horizontal resolution, i.e., number of
voxels. This requires automatic scaling along the horizontal axis so that
important regions get the screen space they need. Unimportant regions
like background can be drastically reduced in their screen space or even
removed. To counteract the problem of the limited screen space, we
apply a nonlinear scaling to the Hilbert line plot. Since the domain
experts are interested in those regions of the dataset where the variation
of the intensities is high, we compute the maximum local ensemble
variation Vh for every Hilbert index as follows:

V h = max
∀m∈Mh

Intensityh(m)− min
∀m∈Mh

Intensityh(m) (1)

m defines an ensemble member of a local ensemble Mh at a discrete
Hilbert index h, Intensityh defines the intensity at Hilbert index h for
member m.

Inspired by the work of Mindek et al. [23] and Lindow et al. [20],
we formulate the discrete local importance-function fl based on the
maximum local ensemble variation Vh:

fl(h) =
(

Vh

maxVh

)p
(2)

To be able to filter for a specific importance-value, we do a normal-
ization by the maximally occurring local ensemble variation. To in-
fluence the nonlinear scaling, we introduce an exponent p, which can
be adapted by the user. Setting this parameter to zero means equal
importance for all Hilbert indices, setting it higher than zero increases
the importance-value for Hilbert indices with a high variance in the
ensemble. Exponent p can be adapted by the user to fine-tune the
importance-value according to the individual application scenario. By
summing the local importance-function values, we define the cumula-
tive importance-function fc as follows:

fc(h) =
h

∑
i=0

fl(i) (3)

The cumulative importance-function values serve as a nonlinear map-
ping to compress the distances between the Hilbert indices (on the
x-axis). Figure 2c illustrates the calculation of the nonlinear mapping.
Figure 5 illustrates the effect of nonlinearly scaling the Hilbert line
plots. The regions indicated with red in Figure 5b are compressed (re-
spectively uncompressed in Figure 5a) by the nonlinear scaling because
of the low ensemble variation in these regions. In addition, we allow the
user to set a threshold for intensities that are not of interest (e.g., areas
of air in the dataset). For these background areas (see Figure 6) fl is
fixed to a value of 0.025. This value ensures that the background areas
are still sufficiently visible, but at the same time occupy little screen
space. By increasing the parameter p, the width of the background
regions can be adjusted.

3.3 Visualization Techniques
Dynamic Volume Lines provides multiple linked views and follows the
visual information-seeking mantra by Ben Shneiderman, “overview
first, zoom and filter, then details on demand” [38]. Two charts, one
with nonlinear scaling and one with constant scaling, are arranged on
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Fig. 5. Effect of the nonlinear scaling. (a) Constantly scaled 1D Hilbert
line plots of six 3D volumes. (b) nonlinearly scaled 1D Hilbert line plots
of the same six 3D volumes.

top of each other with a scaling widget in-between. An overview is pro-
vided through the nonlinearly scaled histogram heatmap visualization.
Background regions can be filtered out. If the user zooms into the chart,
details for each volume are provided through the 1D Hilbert line plots.
An orientation widget displays the size and position of the currently
visible chart area in light blue compared to the overall chart size, which
is shown in gray (see bottom of Figures 6 and 7). In addition, we enable
brushing and linking to immediately highlight the affected voxels or
Hilbert indices when performing a selection in the 1D Hilbert line plots
or in the 3D spatial view, respectively.

3.3.1 Interactive Histogram Heatmap Visualization

The histogram heatmap visualization provides an overview of the in-
tensity distribution in the volume ensemble. To be able to fit the full
volume into a chart with the width of the screen, we split the x-axis of
the nonlinearly scaled chart into intervals of equal width. Due to the
nonlinear scaling, the intervals may include a varying number of Hilbert
indices. For each interval we then compute a single histogram of the
intensities at the included Hilbert indices, over all ensemble members.
The single histogram is visualized as a heatmap through a vertical bar,
all histograms together form a histogram heatmap. The default width of
each histogram bar is 10 pixels, and by default each histogram has 64
bins. These parameters can be adapted by the user to best fit the size and
intensity distribution of the currently analyzed volumes. To improve the
performance in computing the histogram heatmap, we adapt a segment
tree [2]. A segment tree is a binary tree used for storing segments in
the range 0...n−1. Each node represents a segment and is assigned the
corresponding histogram. The segment of a leave node covers only one
Hilbert index (voxel), the segment of the root node covers all Hilbert
indices. The segment tree partitions an arbitrary interval into a minimal
set of segments (of varying sizes). With this, we avoid to compute the
histogram of an interval based on single voxels. Instead we combine
the histograms of the highest-level nodes, whose segments are included
in the requested interval. The root node of the segment tree contains the
entire segment [0,n−1]. A leaf node represents an elementary segment,
which corresponds to one Hilbert index, i.e., one voxel. It is assigned
the histogram of all the intensities at that voxel throughout the entire
volume ensemble. The internal nodes merge the segments of their child
nodes. The segment tree can be serialized using an array of size n−1.
The internal nodes are stored in the first half of the array, the leaf nodes
are stored in the second half of the array. The left child of each node at
index i can be found at index 2∗ i+1, the right child at index 2∗ i+2.
The segment tree is built bottom-up by taking the pairs of nodes with
indices (2 ∗ i+ 1,2 ∗ i+ 2) and aggregating their histograms into the
histogram of the parent at index i. The construction of the segment
tree is performed for every ensemble and takes O(n) time. In our case,
each node of the segment tree contains the histogram for a segment
of a certain contiguous range of Hilbert indices. A vertical bar of the

histogram heatmap is created by summing up each histogram of the
individual volumes. Due to the nonlinear scaling, many Hilbert indices
may be covered by a vertical bar of the histogram heatmap. Without the
segment tree, a histogram would have to be calculated from all these
Hilbert indices. With the segment tree, a histogram for a vertical bar
can be generated in O(logn) time, since only a few nodes need to be
traversed. The segment tree therefore supports efficient rescaling of the
charts.

In the figures in this paper, the extended black body scheme proposed
by Moreland [27] is used as color map for the histogram heatmap, but
other predefined color maps can be selected by the user. Figure 6 shows
an example histogram heatmap. White regions denote a high concen-
tration of intensities in a single bin. This is the case if all ensemble
members agree on a small range of intensities, i.e., if the variation is
low in that region. In contrast, a high variation is indicated by a broader
distribution in violet, red, and yellow colors from the middle of the
color map. The focus in XCT images is typically on regions containing
an object, therefore areas containing only background, i.e., air, are not
of interest and can be ignored for the analysis. The background areas,
where the intensities of all ensemble members are below a user-defined
threshold, are assigned a very low importance-value and therefore are
highly compressed in the nonlinear scaling. Setting the background
threshold is optional, a value of zero means that the background is
left out altogether. Instead of showing a histogram, these background
regions are depicted by light orange boxes. In this fashion, we can
identify interesting regions, i.e., those with high local variation, which
addresses Task 2 from Section 1.

3.3.2 Interactive 1D Hilbert Line Plot Visualization
In the 1D Hilbert line plots, for each volume, the intensities are plotted
on the y-axis over the Hilbert indices on the x-axis. Each plot is
assigned a distinctive color taken from the metro color scheme of
MaterialUI [1], as can be seen in Figure 7a. When zooming into the
histogram heatmap, the 1D Hilbert line plots are activated automatically
as soon as the range of currently visible Hilbert indices fits on the screen
without aggregation. The 1D Hilbert line plots can also be shown as
an overlay on the histogram heatmap. Specific ensemble members can
always be activated and deactivated by clicking on them in the legend.
The current mouse position is highlighted by a position marker line (the
orange line in Figure 7a and c), augmented with a tool-tip displaying the
Hilbert index and intensity at that position. For better visibility and to
better visually link the nonlinearly scaled and the linearly scaled chart,
this line is updated simultaneously in both charts. Visualizing two or
more 1D Hilbert line plots side by side enables a detailed analysis and
comparison of all ensemble members, addressing Task 1 and Task 4
from Section 1.

Dynamic Volume Lines provides several ways to select regions of in-
terest. The user can perform rectangular multi-selections directly in the
charts. Additionally, all Hilbert indices within a specified importance-
range can be selected by defining upper and lower bounds. Furthermore,
the user can perform a selection in the 3D spatial view, by marking a
rectangular region with a dragging interaction. This selects all voxels
inside of the cuboid region that is spanned by projecting the rectangle
from the near plane of the viewing frustum along the viewing direction
to the far plane. In either case, all intervals in the Hilbert line plot
falling into the selected region are highlighted. They are emphasized in
the scaling widget as well, and the respective regions in the selected
ensemble members are displayed in a separate 3D visualization. As
a result, different or similar areas in the ensemble of reconstruction
volumes can be identified and thus repeating patterns in the data (e.g.,
ring artifacts) can be exposed. This addresses Task 3 from Section 1.
Optionally, we provide an aggregated view of the individual 1D Hilbert
line plots using functional boxplots [39]. The functional boxplots show
statistical properties such as the lower and upper whisker, the median,
and the interquartile range (see Figure 1c).

3.3.3 Scaling Widget Visualization
Dynamic Volume Lines depicts a nonlinearly scaled chart at the top and
a constantly scaled chart at the bottom, both showing the histogram
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Fig. 6. The histogram heatmap overview visualization with the extended black body heatmap. White areas indicate a high concentration of intensities.
This is the case if all ensemble members agree on a small range of intensities, i.e., the variation in this region is low. A high variation is indicated by a
broader distribution in violet, red, and yellow. Light orange background areas hide the uninteresting intensities below 30000.
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Fig. 7. (a) The nonlinearly scaled chart shows the differently colored 1D Hilbert line plots for each volume. The intensities are plotted on the y-axis
over the Hilbert indeces on the x-axis. The current mouse position is highlighted by an orange position marker line, which shows the Hilbert index
and intensity at that position. (b) depicts the scaling widget, which emphasizes the nonlinear scaling. (c) shows the constantly scaled chart with the
individual 1D Hilbert line plots.

heatmap visualization as well as the Hilbert line plot visualization.
Early prototypes just had those two charts on top of each other. When
working with those early prototypes together with the domain experts,
we realized that an explicit visualization of the nonlinear scaling is
necessary. For this purpose, the current design includes the scaling
widget, as shown in Figure 7b. Each single histogram of the histogram
heatmap in the nonlinearly scaled chart is mapped to the corresponding
histogram in the constantly scaled chart. If the line plots are visible,
each Hilbert index in the nonlinearly scaled chart maps to the corre-
sponding index in the constantly scaled chart. Small rectangles at the
top of the scaling widget each represent a histogram or Hilbert index.
Their gray values encode the local ensemble variation. Black represents
a low variation, white a high variation. From these rectangles at the top,
trapezoids extend to the bottom. Their color is gradually shifting to an
average gray value, which represents the constant scaling applied in the
lower plot. The position marker line is also shown in the scaling widget,
linking the nonlinearly scaled chart at the top with the constantly scaled
chart at the bottom, as shown in Figure 7.

4 DATASETS

This section briefly explains how the industrial 3D X-ray computed to-
mography (XCT) data is acquired (see Section 4.1) and which datasets
are used (see Section 4.2).

4.1 Data Acquisition
XCT provides a volumetric representation of a scanned specimen. The
specimen is placed on a rotary table between the X-ray source and the
detector. While the specimen is rotating, the source emits cone-beam

X-rays. The detector collects the X-rays attenuated by the specimen.
The attenuation depends on the density and atomic number of the
material and on the penetration thickness of the specimen. The detector
converts the radiation intensity into a series of digital projection images.
In the reconstruction stage, an algorithm is applied on the projection
images in order to reconstruct the 3D volume of the specimen. Talbot-
Lau grating interferometer XCT (TLGI-XCT) delivers, in contrast to
conventional XCT, three complementary modalities, i.e., attenuation
contrast (AC), differential phase contrast (DPC), and dark-field contrast
(DFC) in a single scan. The three modalities are perfectly registered to
each other. AC provides information on the attenuation of the X-ray
beam intensity and thus is equivalent to conventional X-ray imaging.
DPC is related to the index of refraction and image contrast, which
is achieved by the local deflection of the X-ray beam. DFC reflects
the total amount of radiation scattered at small angles, e.g., caused by
microscopic structures in the sample like particles, pores, fibers, struts,
or cracks. In addition, the DFC modality produces a strong signal and
a high contrast at interfaces and reveals information that is undetected
by AC and DPC imaging.

4.2 Dataset Description
The first ensemble consists of 3D reconstruction datasets of an artificial
specimen from simulated XCT [32] of the AC modality with intensities
between 0 and 65535. The size of each dataset is 128× 128× 128
voxels and the data type is unsigned short (see Figure 8a). The artificial
projection images are generated by calculating penetration lengths of
primary monochromatic X-rays through the specimen. The specimen
is represented by surface models of three cylinders, one sphere, and
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Fig. 5. Effect of the nonlinear scaling. (a) Constantly scaled 1D Hilbert
line plots of six 3D volumes. (b) nonlinearly scaled 1D Hilbert line plots
of the same six 3D volumes.

top of each other with a scaling widget in-between. An overview is pro-
vided through the nonlinearly scaled histogram heatmap visualization.
Background regions can be filtered out. If the user zooms into the chart,
details for each volume are provided through the 1D Hilbert line plots.
An orientation widget displays the size and position of the currently
visible chart area in light blue compared to the overall chart size, which
is shown in gray (see bottom of Figures 6 and 7). In addition, we enable
brushing and linking to immediately highlight the affected voxels or
Hilbert indices when performing a selection in the 1D Hilbert line plots
or in the 3D spatial view, respectively.

3.3.1 Interactive Histogram Heatmap Visualization

The histogram heatmap visualization provides an overview of the in-
tensity distribution in the volume ensemble. To be able to fit the full
volume into a chart with the width of the screen, we split the x-axis of
the nonlinearly scaled chart into intervals of equal width. Due to the
nonlinear scaling, the intervals may include a varying number of Hilbert
indices. For each interval we then compute a single histogram of the
intensities at the included Hilbert indices, over all ensemble members.
The single histogram is visualized as a heatmap through a vertical bar,
all histograms together form a histogram heatmap. The default width of
each histogram bar is 10 pixels, and by default each histogram has 64
bins. These parameters can be adapted by the user to best fit the size and
intensity distribution of the currently analyzed volumes. To improve the
performance in computing the histogram heatmap, we adapt a segment
tree [2]. A segment tree is a binary tree used for storing segments in
the range 0...n−1. Each node represents a segment and is assigned the
corresponding histogram. The segment of a leave node covers only one
Hilbert index (voxel), the segment of the root node covers all Hilbert
indices. The segment tree partitions an arbitrary interval into a minimal
set of segments (of varying sizes). With this, we avoid to compute the
histogram of an interval based on single voxels. Instead we combine
the histograms of the highest-level nodes, whose segments are included
in the requested interval. The root node of the segment tree contains the
entire segment [0,n−1]. A leaf node represents an elementary segment,
which corresponds to one Hilbert index, i.e., one voxel. It is assigned
the histogram of all the intensities at that voxel throughout the entire
volume ensemble. The internal nodes merge the segments of their child
nodes. The segment tree can be serialized using an array of size n−1.
The internal nodes are stored in the first half of the array, the leaf nodes
are stored in the second half of the array. The left child of each node at
index i can be found at index 2∗ i+1, the right child at index 2∗ i+2.
The segment tree is built bottom-up by taking the pairs of nodes with
indices (2 ∗ i+ 1,2 ∗ i+ 2) and aggregating their histograms into the
histogram of the parent at index i. The construction of the segment
tree is performed for every ensemble and takes O(n) time. In our case,
each node of the segment tree contains the histogram for a segment
of a certain contiguous range of Hilbert indices. A vertical bar of the

histogram heatmap is created by summing up each histogram of the
individual volumes. Due to the nonlinear scaling, many Hilbert indices
may be covered by a vertical bar of the histogram heatmap. Without the
segment tree, a histogram would have to be calculated from all these
Hilbert indices. With the segment tree, a histogram for a vertical bar
can be generated in O(logn) time, since only a few nodes need to be
traversed. The segment tree therefore supports efficient rescaling of the
charts.

In the figures in this paper, the extended black body scheme proposed
by Moreland [27] is used as color map for the histogram heatmap, but
other predefined color maps can be selected by the user. Figure 6 shows
an example histogram heatmap. White regions denote a high concen-
tration of intensities in a single bin. This is the case if all ensemble
members agree on a small range of intensities, i.e., if the variation is
low in that region. In contrast, a high variation is indicated by a broader
distribution in violet, red, and yellow colors from the middle of the
color map. The focus in XCT images is typically on regions containing
an object, therefore areas containing only background, i.e., air, are not
of interest and can be ignored for the analysis. The background areas,
where the intensities of all ensemble members are below a user-defined
threshold, are assigned a very low importance-value and therefore are
highly compressed in the nonlinear scaling. Setting the background
threshold is optional, a value of zero means that the background is
left out altogether. Instead of showing a histogram, these background
regions are depicted by light orange boxes. In this fashion, we can
identify interesting regions, i.e., those with high local variation, which
addresses Task 2 from Section 1.

3.3.2 Interactive 1D Hilbert Line Plot Visualization
In the 1D Hilbert line plots, for each volume, the intensities are plotted
on the y-axis over the Hilbert indices on the x-axis. Each plot is
assigned a distinctive color taken from the metro color scheme of
MaterialUI [1], as can be seen in Figure 7a. When zooming into the
histogram heatmap, the 1D Hilbert line plots are activated automatically
as soon as the range of currently visible Hilbert indices fits on the screen
without aggregation. The 1D Hilbert line plots can also be shown as
an overlay on the histogram heatmap. Specific ensemble members can
always be activated and deactivated by clicking on them in the legend.
The current mouse position is highlighted by a position marker line (the
orange line in Figure 7a and c), augmented with a tool-tip displaying the
Hilbert index and intensity at that position. For better visibility and to
better visually link the nonlinearly scaled and the linearly scaled chart,
this line is updated simultaneously in both charts. Visualizing two or
more 1D Hilbert line plots side by side enables a detailed analysis and
comparison of all ensemble members, addressing Task 1 and Task 4
from Section 1.

Dynamic Volume Lines provides several ways to select regions of in-
terest. The user can perform rectangular multi-selections directly in the
charts. Additionally, all Hilbert indices within a specified importance-
range can be selected by defining upper and lower bounds. Furthermore,
the user can perform a selection in the 3D spatial view, by marking a
rectangular region with a dragging interaction. This selects all voxels
inside of the cuboid region that is spanned by projecting the rectangle
from the near plane of the viewing frustum along the viewing direction
to the far plane. In either case, all intervals in the Hilbert line plot
falling into the selected region are highlighted. They are emphasized in
the scaling widget as well, and the respective regions in the selected
ensemble members are displayed in a separate 3D visualization. As
a result, different or similar areas in the ensemble of reconstruction
volumes can be identified and thus repeating patterns in the data (e.g.,
ring artifacts) can be exposed. This addresses Task 3 from Section 1.
Optionally, we provide an aggregated view of the individual 1D Hilbert
line plots using functional boxplots [39]. The functional boxplots show
statistical properties such as the lower and upper whisker, the median,
and the interquartile range (see Figure 1c).

3.3.3 Scaling Widget Visualization
Dynamic Volume Lines depicts a nonlinearly scaled chart at the top and
a constantly scaled chart at the bottom, both showing the histogram
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Fig. 6. The histogram heatmap overview visualization with the extended black body heatmap. White areas indicate a high concentration of intensities.
This is the case if all ensemble members agree on a small range of intensities, i.e., the variation in this region is low. A high variation is indicated by a
broader distribution in violet, red, and yellow. Light orange background areas hide the uninteresting intensities below 30000.
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Fig. 7. (a) The nonlinearly scaled chart shows the differently colored 1D Hilbert line plots for each volume. The intensities are plotted on the y-axis
over the Hilbert indeces on the x-axis. The current mouse position is highlighted by an orange position marker line, which shows the Hilbert index
and intensity at that position. (b) depicts the scaling widget, which emphasizes the nonlinear scaling. (c) shows the constantly scaled chart with the
individual 1D Hilbert line plots.

heatmap visualization as well as the Hilbert line plot visualization.
Early prototypes just had those two charts on top of each other. When
working with those early prototypes together with the domain experts,
we realized that an explicit visualization of the nonlinear scaling is
necessary. For this purpose, the current design includes the scaling
widget, as shown in Figure 7b. Each single histogram of the histogram
heatmap in the nonlinearly scaled chart is mapped to the corresponding
histogram in the constantly scaled chart. If the line plots are visible,
each Hilbert index in the nonlinearly scaled chart maps to the corre-
sponding index in the constantly scaled chart. Small rectangles at the
top of the scaling widget each represent a histogram or Hilbert index.
Their gray values encode the local ensemble variation. Black represents
a low variation, white a high variation. From these rectangles at the top,
trapezoids extend to the bottom. Their color is gradually shifting to an
average gray value, which represents the constant scaling applied in the
lower plot. The position marker line is also shown in the scaling widget,
linking the nonlinearly scaled chart at the top with the constantly scaled
chart at the bottom, as shown in Figure 7.

4 DATASETS

This section briefly explains how the industrial 3D X-ray computed to-
mography (XCT) data is acquired (see Section 4.1) and which datasets
are used (see Section 4.2).

4.1 Data Acquisition
XCT provides a volumetric representation of a scanned specimen. The
specimen is placed on a rotary table between the X-ray source and the
detector. While the specimen is rotating, the source emits cone-beam

X-rays. The detector collects the X-rays attenuated by the specimen.
The attenuation depends on the density and atomic number of the
material and on the penetration thickness of the specimen. The detector
converts the radiation intensity into a series of digital projection images.
In the reconstruction stage, an algorithm is applied on the projection
images in order to reconstruct the 3D volume of the specimen. Talbot-
Lau grating interferometer XCT (TLGI-XCT) delivers, in contrast to
conventional XCT, three complementary modalities, i.e., attenuation
contrast (AC), differential phase contrast (DPC), and dark-field contrast
(DFC) in a single scan. The three modalities are perfectly registered to
each other. AC provides information on the attenuation of the X-ray
beam intensity and thus is equivalent to conventional X-ray imaging.
DPC is related to the index of refraction and image contrast, which
is achieved by the local deflection of the X-ray beam. DFC reflects
the total amount of radiation scattered at small angles, e.g., caused by
microscopic structures in the sample like particles, pores, fibers, struts,
or cracks. In addition, the DFC modality produces a strong signal and
a high contrast at interfaces and reveals information that is undetected
by AC and DPC imaging.

4.2 Dataset Description
The first ensemble consists of 3D reconstruction datasets of an artificial
specimen from simulated XCT [32] of the AC modality with intensities
between 0 and 65535. The size of each dataset is 128× 128× 128
voxels and the data type is unsigned short (see Figure 8a). The artificial
projection images are generated by calculating penetration lengths of
primary monochromatic X-rays through the specimen. The specimen
is represented by surface models of three cylinders, one sphere, and
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Fig. 8. (a) 3D reconstruction dataset of the artificial specimen from
simulated XCT of the AC modality, (b) with an ROI cutout of a cube. (c)
shows an xy-slice view of the dataset without Gaussian smoothing. (d–h)
depict the xy-slice views of the five datasets with an increasing variance
of the Gaussian smoothing between 0.2 and 1.0.
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Fig. 9. (a) 3D reconstruction dataset of a real-world TLGI-XCT scanned
foam specimen of the DFC modality (b) with an ROI cutout. (c) shows an
xy-slice view of the FDK reconstructed reference dataset with ring arti-
facts in the center. (d–m) depict the xy-slice views of the SIRT datasets
with iteration parameters increasing from 10 to 700 exemplarily.

one cuboid. Attenuations are calculated by applying Lambert-Beer’s
law. The X-ray scatter and the blurring effects were disabled for the
simulation. The virtual projection images are processed using the FDK
reconstruction algorithm. We applied a Gaussian filter with increasing
smoothing effect to generate five additional volumes. No smoothing
was applied to the first dataset. The individual variances of the Gaussian
smoothing in the range [0.2, 1.0] are increased by a step of 0.2. In a
preprocessing step, a user-defined ROI is selected and applied to all
ensemble volumes (see Figure 8b). The resolution of the ROI cutouts
are 16× 16× 16 voxels. Figure 8c depicts an xy-slice of the dataset
without smoothing. Figures 8d–h show xy-slices of the different results
of the Gaussian smoothing filter.

The second ensemble consists of 16 datasets from a real-world open-
cell polyurethane foam specimen, which was scanned with a Bruker
Skyscan 1294 TLGI-XCT device at a resolution of 11.4 microns. The
size of each dataset is 550× 550× 250 voxels and the data type is
unsigned short. To compare the individual datasets, we normalized
the intensities (itk::NormalizeImageFilter) by setting the mean to zero
and the variance to one. We then rescale the intensities between 0
and 65535. Figure 9a shows the thin cell walls of the foam specimen,
which are revealed by the DFC modality. In the middle of the foam
specimen we cut out an ROI of 64×64×64 voxels (see Figure 9b).
Figure 9c depicts an xy-slice of the cutout reference dataset, which

was reconstructed from 900 projections using the FDK algorithm. The
center of Figure 9c shows ring artifacts. The other 15 datasets were
reconstructed using the simultaneous iterative reconstruction technique
(SIRT) [12] with 900 projections and the following increasing iteration
parameters: 10, 50, 100, 150,...,700. Figures 9d–m present the SIRT
volumes with increasing iteration parameters.

5 RESULTS

In this section we present two case studies that reflect the domain-
specific requirements and present the capabilities of Dynamic Volume
Lines. First, we analyze reconstruction data from the simulated XCT
specimen, and in our second case study, we analyze the real-world XCT
specimen.

5.1 Case study 1: Simulated XCT Dataset
The specimen analyzed here is an artificial dataset from simulated XCT
with three cylindrical bars orthogonal to each other (see Section 4.2).
Two of the bars have attachments at their ends, one of which is a sphere,
the other one is a cube. Different levels of smoothing produce a volume
ensemble, as shown in Figure 8. The ROI cutout for this analysis covers
the end of the bar with the attached cube, as shown in Figure 10a.

The analysis goal for this dataset mainly has been to determine
interesting regions, which correspond to areas where the most changes
happen in the ensemble. We use a synthetic dataset in order to show the
basic behavior of Dynamic Volume Lines under well-defined conditions.
We set a filter for regions with high local variations, in this case we
select an importance-range between 0.5 and 1. The 3D spatial view
displays the respective regions in each member, as can be seen in
Figure 10b. The voxels displayed there clearly indicate that the regions
with most changes are located at the edges of the cube. The selection
also gets highlighted in the nonlinearly scaled Hilbert line plot and
the scaling widget shown in Figure 10c and 10d. The scaling widget
visualizes the importance through the color coding (white to light-gray
for the selection) and by the trapezoidal shapes, which are much broader
at the top row as compared to the bottom. The background threshold
is set to 30000. Intensities below this threshold correspond to air and
are not of interest for this analysis. Figure 10c shows these background
regions, which are marked with light orange boxes. The parameter p
to influence the nonlinear scaling (see Section 3.2, Equation 2) is set
to 1.4. For this dataset, this setting ensures a good balance between
emphasizing regions with high variances, but still keeping background
regions and regions with low variances visible.

5.2 Case study 2: Real-world XCT Dataset
We analyze the ensemble of 16 volumes from the foam specimen (see
Section 4.2) as shown in Figure 9. Each volume of the ensemble
is represented by a Hilbert curve of length 262144. The histogram
heatmap displayed in Figure 11a shows that there is a broad variation
in the lower intensities, indicated by the white region. There are less
intensities in the upper range, and the histogram colors indicate lower
frequencies there. This implies that most of the space is occupied by
voids, the remaining space is left to the cell walls. It is also a hint that
some volumes do not represent the cell walls very well.

When zooming in and viewing the 1D Hilbert line plots as shown
in Figure 11b, one can see at a glance that the volumes differ vastly in
their local intensity variation. The ensemble member corresponding to
the bottom, dark green Hilbert line plot is nearly flat, indicating a low
contrast of the intensities. The topmost, light-green plot shows highly
varying intensities, revealing a high contrast. Figure 11c gives the
functional boxplots of the 1D Hilbert line plots (shown in Figure 11b).
The gray colored interquartile range covers the volumes with iterations
from 250 to 650. The volume with 500 iterations is the median. In
areas of low local intensity variation, the minimum and maximum of
the functional boxplots are very close to each other. The background
threshold is set to zero, because in this analysis scenario we are inter-
ested in low intensities as well. Since there is no compression due to
the background, there are more voxels competing for available screen
space. The parameter p to influence the nonlinear scaling (see Sec-
tion 3.2, Equation 2) is increased to 2 in order to compress regions
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Fig. 10. (a) 3D rendering of the volume without smoothing. (b) 3D volume renderings of the selected voxels for all six ensemble members. (c)
Corresponding Hilbert line plots with highly important regions selected. (d) Scaling widget with selection highlighted in red.

with low variance more and to expand interesting regions with high
variance.

We select regions with an importance-value between 0.1 and 1 (high
variation of the intensities). As can be seen in Figure 11d, only the cell
walls show such high variations. Based on the importance-function, the
cell walls can be separated easily. The selected indices are highlighted
in the scaling widget shown in Figure 11e. Inspecting the Hilbert line
plots (see Figure 11b) and the 3D views of the different parameter
variations (see Figure 11d), we can see that the volumes produced by
the SIRT algorithm with less than 250 iterations result in low contrast
between cell walls and voids. Starting from approximately 350 iter-
ations, the contrast converges to the FDK reference volume. Since
doubling the number of iterations also means doubling the required re-
construction time, we can conclude that we can stop the reconstruction
at 400 iterations without a major loss of accuracy.

When selecting regions with a low importance-value between 0 and
0.001 (low variation of intensities), the ring artifacts are selected, as
shown in Figure 11f. This indicates that the SIRT iterations do not
suppress the ring artifacts. Both FDK and SIRT are affected by them
in exactly the same way. The importance-function could therefore
be used to detect such artifacts. They are the only features in the
volumes, which show only little variation with different reconstruction
parameters. Figure 11g shows in the Hilbert line plots that in the
lower intensity range there is in general a low variation in all the
volumes. There is even less variation in the highlighted regions of the
ring artifacts. We therefore hypothesize that there is potential to use the
local ensemble variation to develop a ring-artifact reduction algorithm
for the reconstructed volumes. This is an insight that would not have
been possible without the knowledge gained from the analysis with
Dynamic Volume Lines.

5.3 Performance Measurements
The experiments were performed on a desktop machine with an Intel(R)
Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce GTX
1080 with 8 GB RAM. The Dynamic Volume Lines were implemented
in C++. ITK 4.9 has been used to perform basic image processing,
to load the datasets, and to generate the Hilbert curves [41]. The 3D
views were rendered with VTK 7.0. The histogram heatmap and the
1D Hilbert line plots were built with the QCustomPlot 2.0 library [5].
The scaling widget was implemented in Qt 5.8.

Computing the Hilbert curves for example for 16 datasets with a size
of 64×64×64 voxels (see Figure 8) takes approximately 12 seconds.
This includes creating the nonlinear scaling, building the segment tree,
and the initial rendering of the charts. Dragging and zooming within
the charts works in real-time. The performance of selecting 1D Hilbert

line plots and rendering the corresponding 3D views depends on the
number of chosen line segments and on the number of chosen volumes,
but typically takes less than 5 seconds.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce Dynamic Volume Lines for the interactive
visual analysis and comparison of ensembles of 3D volumes using
1D Hilbert line plots. Volumes are linearized along a space-filling
Hilbert curve. We introduce an aggregate overview visualization for
volume ensembles as a histogram heatmap, which encodes the intensity
frequencies. We provide nonlinear scaling to emphasize regions with
high local variation, and to optimally utilize the available screen space.
We illustrate the scaling in an interactive scaling widget. We investigate
the usefulness of Dynamic Volume Lines with two case studies. Using
a simulated XCT dataset, we investigate the general usefulness of the
tool in detecting local variations in the ensemble. On a real-world
foam dataset we showed that our importance-function, based on local
variations, can be used to detect structures such as cell walls, and to
discover unwanted ring artifacts.

Our domain expert collaborators were very positive about the possi-
bility to compare multiple volumes at once, as they previously had no
comprehensive tool available to support this analysis scenario. They
also positively mentioned the guidance towards interesting regions, i.e.,
areas with high local variations. It was important for them to be able to
investigate selected regions in more detail, and to retain the relation to
the spatial domain. This allowed them to draw conclusions and gain
insights for adaptations in their algorithm development.

Due to a technical implementation detail, the current prototype limits
the maximum region of interest that can be analyzed to 256×256×256
voxels. We are confident that with minor adaptations this limitation can
be removed to support the analysis of much larger volumes. In general,
the concept of representing an ensemble of volumes as nonlinear 1D
Hilbert line plots is not limited to 3D space, but can also be applied to
(abstract) n-dimensional spaces.
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Fig. 8. (a) 3D reconstruction dataset of the artificial specimen from
simulated XCT of the AC modality, (b) with an ROI cutout of a cube. (c)
shows an xy-slice view of the dataset without Gaussian smoothing. (d–h)
depict the xy-slice views of the five datasets with an increasing variance
of the Gaussian smoothing between 0.2 and 1.0.
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Fig. 9. (a) 3D reconstruction dataset of a real-world TLGI-XCT scanned
foam specimen of the DFC modality (b) with an ROI cutout. (c) shows an
xy-slice view of the FDK reconstructed reference dataset with ring arti-
facts in the center. (d–m) depict the xy-slice views of the SIRT datasets
with iteration parameters increasing from 10 to 700 exemplarily.

one cuboid. Attenuations are calculated by applying Lambert-Beer’s
law. The X-ray scatter and the blurring effects were disabled for the
simulation. The virtual projection images are processed using the FDK
reconstruction algorithm. We applied a Gaussian filter with increasing
smoothing effect to generate five additional volumes. No smoothing
was applied to the first dataset. The individual variances of the Gaussian
smoothing in the range [0.2, 1.0] are increased by a step of 0.2. In a
preprocessing step, a user-defined ROI is selected and applied to all
ensemble volumes (see Figure 8b). The resolution of the ROI cutouts
are 16× 16× 16 voxels. Figure 8c depicts an xy-slice of the dataset
without smoothing. Figures 8d–h show xy-slices of the different results
of the Gaussian smoothing filter.

The second ensemble consists of 16 datasets from a real-world open-
cell polyurethane foam specimen, which was scanned with a Bruker
Skyscan 1294 TLGI-XCT device at a resolution of 11.4 microns. The
size of each dataset is 550× 550× 250 voxels and the data type is
unsigned short. To compare the individual datasets, we normalized
the intensities (itk::NormalizeImageFilter) by setting the mean to zero
and the variance to one. We then rescale the intensities between 0
and 65535. Figure 9a shows the thin cell walls of the foam specimen,
which are revealed by the DFC modality. In the middle of the foam
specimen we cut out an ROI of 64×64×64 voxels (see Figure 9b).
Figure 9c depicts an xy-slice of the cutout reference dataset, which

was reconstructed from 900 projections using the FDK algorithm. The
center of Figure 9c shows ring artifacts. The other 15 datasets were
reconstructed using the simultaneous iterative reconstruction technique
(SIRT) [12] with 900 projections and the following increasing iteration
parameters: 10, 50, 100, 150,...,700. Figures 9d–m present the SIRT
volumes with increasing iteration parameters.

5 RESULTS

In this section we present two case studies that reflect the domain-
specific requirements and present the capabilities of Dynamic Volume
Lines. First, we analyze reconstruction data from the simulated XCT
specimen, and in our second case study, we analyze the real-world XCT
specimen.

5.1 Case study 1: Simulated XCT Dataset
The specimen analyzed here is an artificial dataset from simulated XCT
with three cylindrical bars orthogonal to each other (see Section 4.2).
Two of the bars have attachments at their ends, one of which is a sphere,
the other one is a cube. Different levels of smoothing produce a volume
ensemble, as shown in Figure 8. The ROI cutout for this analysis covers
the end of the bar with the attached cube, as shown in Figure 10a.

The analysis goal for this dataset mainly has been to determine
interesting regions, which correspond to areas where the most changes
happen in the ensemble. We use a synthetic dataset in order to show the
basic behavior of Dynamic Volume Lines under well-defined conditions.
We set a filter for regions with high local variations, in this case we
select an importance-range between 0.5 and 1. The 3D spatial view
displays the respective regions in each member, as can be seen in
Figure 10b. The voxels displayed there clearly indicate that the regions
with most changes are located at the edges of the cube. The selection
also gets highlighted in the nonlinearly scaled Hilbert line plot and
the scaling widget shown in Figure 10c and 10d. The scaling widget
visualizes the importance through the color coding (white to light-gray
for the selection) and by the trapezoidal shapes, which are much broader
at the top row as compared to the bottom. The background threshold
is set to 30000. Intensities below this threshold correspond to air and
are not of interest for this analysis. Figure 10c shows these background
regions, which are marked with light orange boxes. The parameter p
to influence the nonlinear scaling (see Section 3.2, Equation 2) is set
to 1.4. For this dataset, this setting ensures a good balance between
emphasizing regions with high variances, but still keeping background
regions and regions with low variances visible.

5.2 Case study 2: Real-world XCT Dataset
We analyze the ensemble of 16 volumes from the foam specimen (see
Section 4.2) as shown in Figure 9. Each volume of the ensemble
is represented by a Hilbert curve of length 262144. The histogram
heatmap displayed in Figure 11a shows that there is a broad variation
in the lower intensities, indicated by the white region. There are less
intensities in the upper range, and the histogram colors indicate lower
frequencies there. This implies that most of the space is occupied by
voids, the remaining space is left to the cell walls. It is also a hint that
some volumes do not represent the cell walls very well.

When zooming in and viewing the 1D Hilbert line plots as shown
in Figure 11b, one can see at a glance that the volumes differ vastly in
their local intensity variation. The ensemble member corresponding to
the bottom, dark green Hilbert line plot is nearly flat, indicating a low
contrast of the intensities. The topmost, light-green plot shows highly
varying intensities, revealing a high contrast. Figure 11c gives the
functional boxplots of the 1D Hilbert line plots (shown in Figure 11b).
The gray colored interquartile range covers the volumes with iterations
from 250 to 650. The volume with 500 iterations is the median. In
areas of low local intensity variation, the minimum and maximum of
the functional boxplots are very close to each other. The background
threshold is set to zero, because in this analysis scenario we are inter-
ested in low intensities as well. Since there is no compression due to
the background, there are more voxels competing for available screen
space. The parameter p to influence the nonlinear scaling (see Sec-
tion 3.2, Equation 2) is increased to 2 in order to compress regions
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Fig. 10. (a) 3D rendering of the volume without smoothing. (b) 3D volume renderings of the selected voxels for all six ensemble members. (c)
Corresponding Hilbert line plots with highly important regions selected. (d) Scaling widget with selection highlighted in red.

with low variance more and to expand interesting regions with high
variance.

We select regions with an importance-value between 0.1 and 1 (high
variation of the intensities). As can be seen in Figure 11d, only the cell
walls show such high variations. Based on the importance-function, the
cell walls can be separated easily. The selected indices are highlighted
in the scaling widget shown in Figure 11e. Inspecting the Hilbert line
plots (see Figure 11b) and the 3D views of the different parameter
variations (see Figure 11d), we can see that the volumes produced by
the SIRT algorithm with less than 250 iterations result in low contrast
between cell walls and voids. Starting from approximately 350 iter-
ations, the contrast converges to the FDK reference volume. Since
doubling the number of iterations also means doubling the required re-
construction time, we can conclude that we can stop the reconstruction
at 400 iterations without a major loss of accuracy.

When selecting regions with a low importance-value between 0 and
0.001 (low variation of intensities), the ring artifacts are selected, as
shown in Figure 11f. This indicates that the SIRT iterations do not
suppress the ring artifacts. Both FDK and SIRT are affected by them
in exactly the same way. The importance-function could therefore
be used to detect such artifacts. They are the only features in the
volumes, which show only little variation with different reconstruction
parameters. Figure 11g shows in the Hilbert line plots that in the
lower intensity range there is in general a low variation in all the
volumes. There is even less variation in the highlighted regions of the
ring artifacts. We therefore hypothesize that there is potential to use the
local ensemble variation to develop a ring-artifact reduction algorithm
for the reconstructed volumes. This is an insight that would not have
been possible without the knowledge gained from the analysis with
Dynamic Volume Lines.

5.3 Performance Measurements
The experiments were performed on a desktop machine with an Intel(R)
Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce GTX
1080 with 8 GB RAM. The Dynamic Volume Lines were implemented
in C++. ITK 4.9 has been used to perform basic image processing,
to load the datasets, and to generate the Hilbert curves [41]. The 3D
views were rendered with VTK 7.0. The histogram heatmap and the
1D Hilbert line plots were built with the QCustomPlot 2.0 library [5].
The scaling widget was implemented in Qt 5.8.

Computing the Hilbert curves for example for 16 datasets with a size
of 64×64×64 voxels (see Figure 8) takes approximately 12 seconds.
This includes creating the nonlinear scaling, building the segment tree,
and the initial rendering of the charts. Dragging and zooming within
the charts works in real-time. The performance of selecting 1D Hilbert

line plots and rendering the corresponding 3D views depends on the
number of chosen line segments and on the number of chosen volumes,
but typically takes less than 5 seconds.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce Dynamic Volume Lines for the interactive
visual analysis and comparison of ensembles of 3D volumes using
1D Hilbert line plots. Volumes are linearized along a space-filling
Hilbert curve. We introduce an aggregate overview visualization for
volume ensembles as a histogram heatmap, which encodes the intensity
frequencies. We provide nonlinear scaling to emphasize regions with
high local variation, and to optimally utilize the available screen space.
We illustrate the scaling in an interactive scaling widget. We investigate
the usefulness of Dynamic Volume Lines with two case studies. Using
a simulated XCT dataset, we investigate the general usefulness of the
tool in detecting local variations in the ensemble. On a real-world
foam dataset we showed that our importance-function, based on local
variations, can be used to detect structures such as cell walls, and to
discover unwanted ring artifacts.

Our domain expert collaborators were very positive about the possi-
bility to compare multiple volumes at once, as they previously had no
comprehensive tool available to support this analysis scenario. They
also positively mentioned the guidance towards interesting regions, i.e.,
areas with high local variations. It was important for them to be able to
investigate selected regions in more detail, and to retain the relation to
the spatial domain. This allowed them to draw conclusions and gain
insights for adaptations in their algorithm development.

Due to a technical implementation detail, the current prototype limits
the maximum region of interest that can be analyzed to 256×256×256
voxels. We are confident that with minor adaptations this limitation can
be removed to support the analysis of much larger volumes. In general,
the concept of representing an ensemble of volumes as nonlinear 1D
Hilbert line plots is not limited to 3D space, but can also be applied to
(abstract) n-dimensional spaces.
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Fig. 11. (a) Histogram heatmap of the foam volumes ensemble showing most intensities in the lower range. (b) 1D Hilbert line plots zoom-in, enabling
a detailed comparison of the reconstruction volumes. (c) Functional boxplots of the 1D Hilbert line plots in (b). (d) 3D views of regions with selected
high importance, coinciding with the foam cell walls. (e) Regions of high importance as in (d), selected in the 1D Hilbert line plots. (f) 3D views of
regions with selected low importance, coinciding with the ring artifacts. (g) Regions of low importance as in (f), selected in the 1D Hilbert line plots.
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