Speaker: Claus Schreiblauer (ICGA)

During the last decade the increased use of laser range-scanners for sampling the environment has led to gigantic point cloud data sets. Due to the size of such data sets, tasks like viewing, editing, or presenting the data have become a challenge per se, as the point data is too large to fit completely into the main memory of a customary computer system. In order to accomplish these tasks and enable the interaction with gigantic point clouds on consumer grade computer systems, this thesis presents novel methods and data structures for efficiently dealing with point cloud data sets consisting of more than 10^9 point samples. 

Details

Category

Duration

45 + 30
Supervisor: MW