Speaker: Alexander Platzer

 Background

Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers, SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose. Principal Findings

We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of large SNP datasets. We also propose a set of key figures for evaluating these visualizations; in all of these t-SNE performs better. Significance

To transform data PCA remains a reasonably good method, but for visualization it should be replaced by a method from the subfield of dimension reduction. To evaluate the performance of visualization, we propose key figures of cross-validation with machine learning methods, as well as indices of cluster validity. 

 Background

Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers, SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose. Principal Findings

We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of large SNP datasets. We also propose a set of key figures for evaluating these visualizations; in all of these t-SNE performs better. Significance

To transform data PCA remains a reasonably good method, but for visualization it should be replaced by a method from the subfield of dimension reduction. To evaluate the performance of visualization, we propose key figures of cross-validation with machine learning methods, as well as indices of cluster validity. 

Details

Duration

30 + 15
Supervisor: Milos Sramek