Speaker: Alexander Reznicek (Inst. 193-02 CG)
The synthesis of an image from a scene stored on a computer is called rendering, which is able to deliver photo-realistic results, e.g., by using specific variants of the class of ray tracing
algorithms. However, these variants (e.g., path tracing) possess a stochastic characteristic which results in a high computational expense. This is explained by the nature of stochastic algorithms, which use a high number of samples to compute a result—in case of ray tracing, these samples manifest in a high number of rays needed for a complete rendering.
One possibility to accelerate ray tracing—no matter if using a stochastic or simpler variants—is the use of customized hardware. FPGRay is such an approach, which combines the use of customized hardware with the software of an off-the-shelf PC to a hybrid solution. This allows increasing the efficiency by specialized hardware and delivers a sustainability in case of changing algorithms at the same time.
The results point towards a possible efficiency gain. Unfortunately, in the scope of this thesis this was not realizable and the specific implementation showed a lower efficiency compared to the software implementation. Nevertheless, the possibility to achieve a higher efficiency with this approach by indicating FPGRay’s potential could be shown.