1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//!
//! Module containing everything related to the voxel grid that is used as acceleration structure
//! for sphere marching.
//!

use crate::utils::*;
use nalgebra_glm as glm;
use wgpu;

///
/// Pointer to block of memory containing one grid cell of voxel grid.
///
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct VoxelPointer {
    pub start: u32,
    pub length: u32,
}

unsafe impl bytemuck::Zeroable for VoxelPointer {}
unsafe impl bytemuck::Pod for VoxelPointer {}
///
/// Voxel grid. Contains information about AABB of the scene and GPU buffers containing the voxel grid in flat format for GPU.
///
pub struct VoxelGrid {
    pub bb_min: glm::Vec3,
    pub bb_max: glm::Vec3,
    pub bb_diff: glm::Vec3,
    pub bb_size: glm::Vec3,
    pub voxel_length: f32,

    pub voxels: wgpu::Buffer,
    pub voxels_len: usize,
    pub voxel_pointers: wgpu::Buffer,
    pub voxel_pointers_len: usize,
}

impl VoxelGrid {
    ///
    /// Initializes the voxel grid. Requires
    ///
    pub fn new(device: &wgpu::Device, radius_max: f32, mut atoms: Vec<glm::Vec4>) -> Self {
        // Calculate voxel length
        let solvent_radius_max = 2.0;
        let voxel_length = 2.0 * radius_max + 2.0 * solvent_radius_max;

        // Find bounding box of the entire structure
        let mut bb_max = glm::vec3(std::f32::NEG_INFINITY, std::f32::NEG_INFINITY, std::f32::NEG_INFINITY);
        let mut bb_min = glm::vec3(std::f32::INFINITY, std::f32::INFINITY, std::f32::INFINITY);
        for atom in atoms.iter() {
            bb_max = glm::max2(&bb_max, &glm::vec4_to_vec3(atom));
            bb_min = glm::min2(&bb_min, &glm::vec4_to_vec3(atom));
        }
        bb_min -= glm::vec3(1.0, 1.0, 1.0);
        bb_max += glm::vec3(1.0, 1.0, 1.0);
        let bb_center = (bb_max + bb_min) / 2.0;

        // Center the molecules (+their bounding box)
        bb_max = bb_max - bb_center;
        bb_min = bb_min - bb_center;
        for atom in atoms.iter_mut() {
            atom.x -= bb_center.x;
            atom.y -= bb_center.y;
            atom.z -= bb_center.z;
        }

        // Pad the bounding box to size divisible by voxel length
        bb_max.apply(|e| e.round_to_multiple(voxel_length as i32));
        bb_min.apply(|e| e.round_to_multiple(voxel_length as i32));

        let bb_diff = bb_max - bb_min;
        let bb_size = bb_diff.apply_into(|e| e.abs() / voxel_length as f32);

        let mut voxels_nested: Vec<Vec<glm::Vec4>> = vec![Vec::new(); (bb_size.x * bb_size.y * bb_size.z) as usize];

        for atom in atoms.iter() {
            let grid_position_vec3 = (atom.xyz() - bb_min) / voxel_length;
            let grid_position_ivec3 = glm::vec3(
                grid_position_vec3.x as i32,
                grid_position_vec3.y as i32,
                grid_position_vec3.z as i32,
            );

            let bb_size = glm::vec3(bb_size.x as i32, bb_size.y as i32, bb_size.z as i32);
            let width = bb_size.x;
            let height = bb_size.y;
            let x = grid_position_ivec3.x;
            let y = grid_position_ivec3.y;
            let z = grid_position_ivec3.z;
            let index = (width * height * z) + (width * y) + x;

            voxels_nested[index as usize].push(glm::vec4(atom.x, atom.y, atom.z, 1.0));
        }

        let mut voxels: Vec<f32> = Vec::new();
        let mut voxel_pointers = Vec::new();
        let mut count = 0;
        for voxel in voxels_nested.iter_mut() {
            voxel_pointers.push(VoxelPointer {
                start: count,
                length: voxel.len() as u32,
            });
            count += voxel.len() as u32;

            for v in voxel {
                voxels.push(v[0]);
                voxels.push(v[1]);
                voxels.push(v[2]);
                voxels.push(v[3]);
            }
        }

        let voxels_len = voxels.len() as usize;
        let voxels = device.create_buffer_with_data(bytemuck::cast_slice(&voxels), wgpu::BufferUsage::STORAGE_READ);

        let voxel_pointers_len = voxel_pointers.len() as usize;
        let voxel_pointers = device.create_buffer_with_data(bytemuck::cast_slice(&voxel_pointers), wgpu::BufferUsage::STORAGE_READ);

        Self {
            bb_min,
            bb_max,
            bb_diff,
            bb_size,
            voxel_length,

            voxels,
            voxels_len,
            voxel_pointers,
            voxel_pointers_len,
        }
    }
}