
Volume Visualization

Part 2 (out of 3)

Optical Models for Volume Rendering

Display of Semi-Transparent Media

Modelling of Natural Phenomena

TU

- Various models (Examples):
- Emission only (light particles)
- Absorption only (dark fog)
- Emission & absorption (clouds)
- Single scattering, w/o shadows
- Multiple scattering
- Two approaches:
 - Analytical model (via differentials)
 - Numerical approximation (via differences)

Eduard Gröller, Helwig Hauser

TU

Emission, Differential ModelContinuous emission model:

- Question: how much light (I like intensity) is added along an infinitely short ray segment in the volume
 - Differential dI/dt = g(t) ...
 volume emits light (corresponding to thickness)
 - Glow factor g(t)
 - Integration results in: $\mathbf{I}(s) = \mathbf{I}_0 + \int_{t \in [0,s]} g(t) dt$
 - Overall emission contrib.: $G(0,s) = \int_{t \in [0,s]} g(t) dt$
 - Unrealistic, because no absorption

duard Gräller Helwig Hauser

4

Emission, Numerical Approximation

F

- Discrete emission model:
 - Question: how much light (C like color) is added within a small, but finite volume extent
 - $\begin{array}{l} \bullet \ C_i \dots \ \text{contribution of vol. extent i (thickness 1)} \\ \Rightarrow \ \text{adding emission of extent i results in} \\ Out_i = In_i + C_i \ \Leftrightarrow \ Out_i = Out_{i-1} + C_i \end{array}$
 - Accumulation:

 $\begin{aligned} Out_i &= In_j + C_j + \ldots + C_{i\text{-}1} + C_i \\ Out_i &= In_j + \Sigma_{j \leq k \leq i} C_k \end{aligned}$

Example:

pixel value = background + $\Sigma_{k \in N} C(ray(k))$

*

Emission Only

TU

- Differential model:
 - $I(s) = I_0 + \int_{t \in [0,s]} g(t) dt$
- Discrete approximation:
 - Out_s = $In_0 + \Sigma_{s \ge k \in N} C_k$
- Example:

Eduard Gröller, Helwig Hauser

Absorption, Differential Model

TU

- Continuous absorption model:
 - Question: how much light (in % of I₀) remains after traversal of ray segment through the volume
 - Differential dI/dt=-τ(t)I(t) ...
 light (I) is partially absorbed (τ)
 - Extinction coefficient τ(t), e.g., 30%
 - Integration results in: $I(s) = I_0 \cdot exp(-\int_{t \in [0,s]} \tau(t) dt)$
 - Total transparency: $T(0,s) = \exp(-\int_{t \in [0,s]} \tau(t) dt)$
 - Total absorption: $\alpha(0,s)=1-T(0,s)$

,

duard Gräller Helwig Hauser

Absorption, Numerical Approximation			
	Abcorption	Viumorical Approvim	otion
	/A(0)<(0)10)11(0)1	Numencal Additoxii	

F

- Discrete approximation model:
 - Question: how much light (in % of I₀) remains after traversal of small, but finite volume extent
 - $\begin{array}{l} \bullet \; \alpha_i \; \dots \; \text{opacity of volume extent i (per unit)} \\ \Rightarrow \; \text{result after traversal of extent i} \\ \mathsf{Out}_i = \mathsf{In}_i \cdot (1 \alpha_i) \Leftrightarrow \; \mathsf{Out}_i = \mathsf{Out}_{i 1} \cdot (1 \alpha_i) \\ \end{array}$
 - Akkumulation: Out_i = $In_j \cdot (1-\alpha_j) \cdot \ldots \cdot (1-\alpha_i)$ Out_i = $In_j \cdot \prod_{j \le k \le i} (1-\alpha_k)$
 - Unit sampling: unit distance between α_i samples!!

Eduard Gröller, Helwig Hause

- 1

Absorption Only

TU

- Differential model:
 - $\mathbf{I}(\mathbf{s}) = \mathbf{I}_0 \cdot \exp(-\int_{t \in [0,\mathbf{s}]} \tau(t) dt)$
- Discrete approximation:
 - $\bullet \mathsf{Out}_{s} = \mathsf{In}_{0} \cdot \Pi_{s \ge k \in \mathsf{N}} (1 \alpha_{k})$
- Example:

Eduard Gröller, Helwig Hause

Emission and Absorption

TU

- Continuous model (no scattering):
 - At each position is given:
 - Emission g(t)
 - Extinction coefficient τ(t)
 - Differential $dI/dt = g(t) \tau(t)I(t)$
 - Emission g(t) attenuated by T(t,s)
 - Only Emission: $I_0 + \int_{t \in [0,s]} g(t) dt$
 - With Absorption: $I_0 \cdot T(0,s) + \int_{t \in [0,s]} g(t) \cdot T(t,s) dt$
 - Emission und Absorption:

 $\mathbf{I}_{0} \cdot \exp(-\int_{u \in [0,s]} \tau(u) du) + \int_{t \in [0,s]} g(t) \cdot \exp(-\int_{u \in [t,s]} \tau(u) du) dt$

3

Numerical Approximation

- Discrete model (compositing):
 - For each volume extent i:
 - Contribution C_i
 - Opacity α_i , transparency 1– α_i
 - Out_i = $In_i \cdot (1-\alpha_i) + C_i \cdot \alpha_i$ (Std.-compositing)
 - Convex combination

from background and own contribution

- Out_s = $In_0 \cdot \prod_{s \ge k \in N} (1 \alpha_k)$ $+ \sum_{s \ge k \in \mathbb{N}} C_k \cdot \alpha_k \cdot \prod_{s \ge l > k} (1 - \alpha_l)$
- Opacity-weighted colors: C_i·α_i instead of C_i

Emission and Absorption

- Differential model:
 - $I(s) = I_0 \cdot T(0,s) + \int_{t \in [0,s]} g(t) \cdot T(t,s) dt$
 - $\bullet \ \mathbf{I(s)} = \mathbf{I_0} \cdot \exp(-\int_{u \in [0,s]} \tau(u) du)$

$$+ \int_{t \in [0,s]} g(t) \cdot \exp(-\int_{u \in [t,s]} \tau(u) du) dt$$

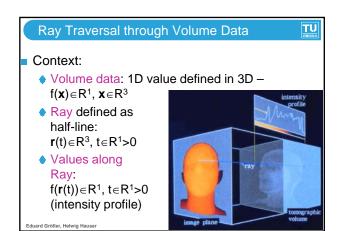
- Discrete Approximation:
 - Out_i = $In_i \cdot (1-\alpha_i) + C_i \cdot \alpha_i$ (Compositing) • Out_s = $In_1 \cdot I \cdot S_{l}$ • Out_s = $In_0 \cdot \Pi_{s \ge k \in \mathbb{N}} (1 - \alpha_k) + \Sigma_{s \ge k \in \mathbb{N}} C_k \cdot \alpha_k \cdot \Pi_{s \ge l > k} (1 - \alpha_l)$

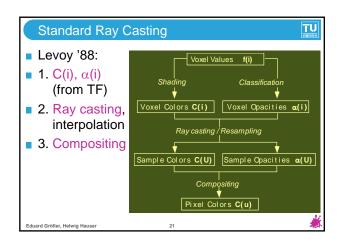
Eduard Gröller, Helwig Hauser

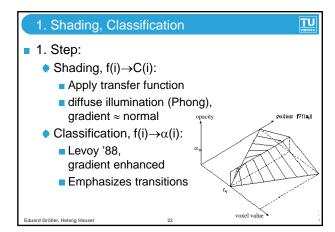
Emission or/and Absorption

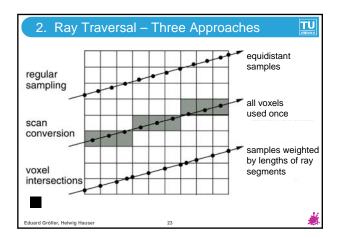
Emission only

Emission and Absorption Absorption



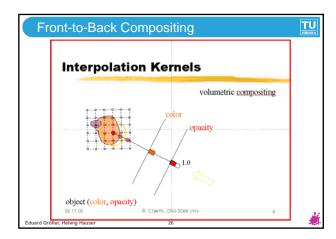



TU

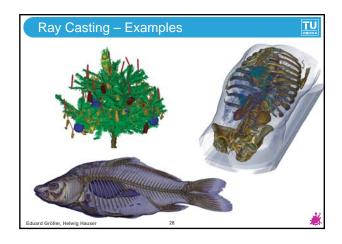

Scattering Scattering: particles deviate light at a position BRDF (bidirectional reflectance distribution function) Single scattering ■ Too little light in the interior Single scattering with shadows Multiple Scattering Radiosity techniques ■ Very realistic, very costly Literature Paper (more details): Nelson Max: "Optical Models for Direct Volume Rendering" in IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 2, June 1995 Eduard Gröller, Helwig Hauser **Ray Casting / Compositing** Classical **Image-Order Methods**

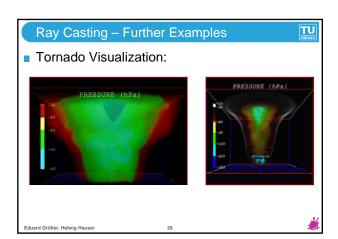
Ray Tracing vs. Ray Casting Ray Tracing: method from image generation In volume rendering: only viewing rays ⇒ therefore Ray Casting Classical image-order method Ray Tracing: ray – object intersection Ray Casting: no objects, density values in 3D In theory: take all density values into account! In practice: traverse volume step by step Interpolation necessary for each step!

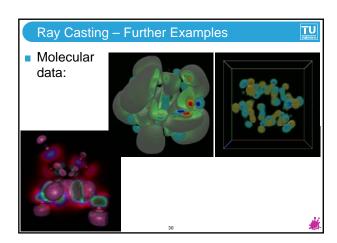
2. Ray Traversal, Interpolation Voxel-based vs. cell-based traversal Tri-linear (interpolation within a cell) vs. bi-linear (interpolation within a cell face) Tri-linear: first 4* in z-direction (interpolated square), then 2* in y-direction (interpolated line), then 1* in x-direction (interpolated value) Unit sampling vs. variable sample distances – compositing different!!

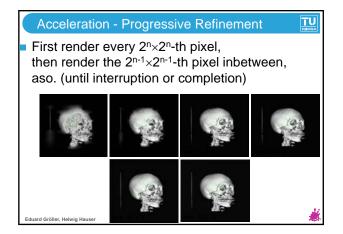

Compositing: F2B vs. B2F

Back-to-Front (B2F):


- Out_i = In_{i} ·(1- α_{i}) + C_{i} · α_{i} , In_{i+1} = Out_i ...
- Depending on local transparency (1-α_i) ⇒ convex combination of old In, & new C,
- Example:
 - Voxel i: C_i = red, α_i =30%; so far: In_i = white
 - Result of compositing: 70% white + 30% red


Front-to-Back (F2B):


- Col = Col + $(1-\alpha_{akk})\cdot C_i\cdot \alpha_l \dots$ accumulated color
- $\alpha_{akk} = \alpha_{akk} + (1-\alpha_{akk}) \cdot \alpha_i$... accumulated opacity,



Ray Casting – Examples CT scan of human hand (244x124x257, 16 bit)

Literature Paper (more details): Marc Levoy: "Display of Surfaces from Volume Data" in IEEE Computer Graphics & Applications, Vol. 8, No. 3, June 1988

Acknowledgement For material for this lecture unit: Nelson Max (LLNL), Marc Levoy (Stanford) Hans-Georg Pagendarm (DLR, Göttingen) Lloyd Treinish (IBM) Roberto Scopigno, Claudio Montani (CNR, Pisa) Roger Crawfis (Ohio State Univ.) Michael Meißner (GRIS, Tübingen) Torsten Möller etc.