VU Entwurf und Programmierung einer
Rendering-Engine

Vorbesprechung UE

Goals of the exercise

e Deepen understanding...

e Course contents are wide-ranging
o Thus, in the exercise students may focus on specific methods or applications

e Task can be chosen freely
o Next lecture, we will discuss your ideas and fix the topics
e Implementation framework can be chosen by the student

Overview/mode

e Cool project (up to 2 students)
e Details in next slides
e Steps

@)

O O O O

Discuss ideas in lecture
Registration: TISS & short proposal
Implementation & Benchmarking
Hand in final report & source code
Abgabegesprach & oral exam

Problem definition

Three parts

1. Scene generation

2. Optimization technique for, either

a. Rendering: rendering techniques typically involve the implementation of an acceleration data-structure, e.g. for culling
OR

b. Interaction: For use cases such as CAD tools or point cloud editing interaction performance (picking!) is crucial, also for
this case we typically use acceleration data-structures.
c. Large Scale Visualization: Large environment handling precision problems possibly including level of detalil

3. Rendering
Validation and Documentation

e The implemented technique need to be analyzed in terms of performance
e Hand in a project report via email, two days before your oral exam appointment.

Scene Generation

Use representative scenes to test your project

For most algorithms, speed-up critically depends on geometric complexity
o e.g. culling for very small geometries most likely will not result in speed up....

Often, computationally generated geometry serves as good starting point
o Sphere, cylinder, cone, hyperboloid, paraboloid,...
m can be parametrized easily (e.g. by controlling subdivision levels)
o Generated terrains
o Randomly generated city
o Provide mechanism to change parameters such as geometry/scene size

You can also use real-world scenes or imported scene data, but make sure to
test your implementation with

o either extreme cases
o or a set of representative test cases

2a. Optimization technique for rendering

e Depending on your use case, choose an appropriate implementation technique

O

@)

@)

For terrain rendering: culling or adaptive subdivision or (any other ideas?)
For CAD scenes: culling, gpu culling or optimization techniques for reducing driver overheads
For game scenes you might need handle dynamic and static content differently

e Optimizations:

O

O O O O O O O

Quad-Tree/Oct-tree for simple view-frustum-culling

BSP tree for transparent rendering

Occlusion culling (2D case would suffice here)

Level of detail (e.g. using subdivision surfaces with varying depth)
Geometric optimization (e.g. optimizing meshes for cache locality)
GPU accelerated computation of draw calls (e.g. compute shader)
GPU accelerated culling (e.g. compute shader)

Mechanisms for dealing with many many materials...

2b. Optimization technique for interaction

e For interactive applications such as CAD software or point cloud editing
software, picking needs to be FAST.

e Optimization data structures could be:

o Bounding volume hierarchies
o Kd-Trees
o Any other ideas...

3. Rendering

..... Of course....

e Your application should provide (simple!) interactive navigation in the scene
o Don’t put too much effort into that. Setting the camera to interesting viewpoints for example is
also sufficient

e \What is not important
o Tuned graphics effects (other lectures handle this well ;))

Benchmarks

e Check your optimization using representative parameters
o For optimization data-structures most important parameter is: On/off
m With and without view frustum culling
o Fortrees
m Depth (e.g. how long to subdivide)
m Kd-Tree parameters

e Provide your benchmarks in the report

e Most important parameters should be be demonstrated at Abgabegesprach
o Basis for discussion...

e Extra lecture on benchmarking

Don’t use debug builds and attached
debuggers when benchmarking!!

First steps

Up to 2 students per project team

For teams of two project adapted project size

We are happy to discuss your ideas before/during/after lectures

Make sure to talk to the LV team if the project is OK (getting too much effort

for such projects is easy ;))

Project proposal / registration

e Project proposal (max 1 page)
o Short description: one liner
o Your name/your team
o Problem statement
o Planned approach
o Evaluation/benchmark methodology

e mail with project description and project team to rendEng@vrvis.at till
11.11.2019

mailto:rendEng@vrvis.at

Final report/results

e Hand in (via email, 2 days before exam)
e 2 pages per student

e Extend proposal with

o Actual approach/used algorithms taken (if different from proposal)
o Benchmark results
o Discussion explaining results

m Expected or unexpected results?

e The implementation (source code).

e If you want to show your result on our PC, provide a little description how to start it, so we can
test it before the exam.

e Report and project will be discussed as part of the oral exam.

e Email to: rendEng@vrvis.at

Exam and test machine

Appointments till 27.3.2020 (rendEng@vrvis.at)

Email me with 3 possible dates/times 2 weeks before
o Mo-Fr, 10-11:30, 14:00-16:30

Email me your report+source code 2 days before the exam

1 question regarding the project, 2 questions from the lecture topics

The exam is should be done in 10mins.

If you don’t want to carry a laptop to the exam, send us instructions on how to

run the program
o We have a PC WIN10 and Arch Linux GTX980, and Radeon RX Vega

mailto:rendEng@vrvis.at

Programming environment

e You are free to choose whatever platform you want!!
e Using Aardvark reduces efforts for some tasks

e For other, rather low level tasks a custom application setup is more desirable
o e.g. when using low level features such as vulkan generated commands...

e For aardvark users (but also project related questions) we provide support via
gitter: https://qitter.im/aardvark-platform/RenderingEngineVU

https://gitter.im/aardvark-platform/RenderingEngineVU

Inspirations for cool projects

Culling on the GPU using compute shaders to generate

o Instance buffers (matrices, used for instancing geometry)
o Indirect buffers
o Command buffers (vulkan)

Culling on the CPU

Multithreaded scene traversal (UE4 style)

Picking huge scenes

Low level OpenGL hackery in order to handle huge scenes

Rendering scenes with “huge” number of lights
Accelerating rendering via (GPU?) occlusion queries

Meet us at: https://gitter.im/aardvark-platform/RenderingEngineVU

https://c1.staticflickr.com/9/8589/15821362994_25efd36e58_z.jpg01

Further reading

® OpenGL Scene Rendering Techniques:
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-
Techniques.pdf

e Siggraph BOF, interesting porting work of game engine developers for vulkan:
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul

16.pdf

e Approaching the Zero Driver Overhead (AZDO talk), Everitt, Sellers, McDonald, Foley, Siggraph, GDC 2014,
https://de.slideshare.net/CassEveritt/approaching-zero-driver-overhead

e OpenGL Efficiency: AZDO overview talk,
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf

e Optimizing the Graphics Pipeline with Compute, Wihlidal (Frostbite) 2016,
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf

http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://de.slideshare.net/CassEveritt/approaching-zero-driver-overhead
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf

