
Vorbesprechung UE

VU Entwurf und Programmierung einer 
Rendering-Engine



Goals of the exercise
● Deepen understanding…
● Course contents are wide-ranging

○ Thus, in the exercise students may focus on specific methods or applications

● Task can be chosen freely
○ Next lecture, we will discuss your ideas and fix the topics

● Implementation framework can be chosen by the student



Overview/mode
● Cool project (up to 2 students)
● Details in next slides
● Steps

○ Discuss ideas in lecture
○ Registration: TISS & short proposal 
○ Implementation & Benchmarking
○ Hand in final report & source code
○ Abgabegespräch & oral exam



Problem definition
Three parts

1. Scene generation
2. Optimization technique for, either

a. Rendering: rendering techniques typically involve the implementation of an acceleration data-structure, e.g. for culling 
OR

b. Interaction: For use cases such as CAD tools or point cloud editing interaction performance (picking!) is crucial, also for 
this case we typically use acceleration data-structures.

c. Large Scale Visualization: Large environment handling precision problems possibly including level of detail

3. Rendering

Validation and Documentation

● The implemented technique need to be analyzed in terms of performance
● Hand in a project report via email, two days before your oral exam appointment.



1. Scene Generation
● Use representative scenes to test your project
● For most algorithms, speed-up critically depends on geometric complexity

○ e.g. culling for very small geometries most likely will not result in speed up…. 

● Often, computationally generated geometry serves as good starting point
○ Sphere, cylinder, cone, hyperboloid, paraboloid,...

■ can be parametrized easily (e.g. by controlling subdivision levels)
○ Generated terrains
○ Randomly generated city
○ Provide mechanism to change parameters such as geometry/scene size

● You can also use real-world scenes or imported scene data, but make sure to 
test your implementation with

○ either extreme cases
○ or a set of representative test cases



2a. Optimization technique for rendering 
● Depending on your use case, choose an appropriate implementation technique

○ For terrain rendering: culling or adaptive subdivision or (any other ideas?)
○ For CAD scenes: culling, gpu culling or optimization techniques for reducing driver overheads
○ For game scenes you might need handle dynamic and static content differently

● Optimizations:
○ Quad-Tree/Oct-tree for simple view-frustum-culling
○ BSP tree for transparent rendering
○ Occlusion culling (2D case would suffice here)
○ Level of detail (e.g. using subdivision surfaces with varying depth)
○ Geometric optimization (e.g. optimizing meshes for cache locality)
○ GPU accelerated computation of draw calls (e.g. compute shader)
○ GPU accelerated culling (e.g. compute shader)
○ Mechanisms for dealing with many many materials…



2b. Optimization technique for interaction
● For interactive applications such as CAD software or point cloud editing 

software, picking needs to be FAST.
● Optimization data structures could be:

○ Bounding volume hierarchies
○ Kd-Trees
○ Any other ideas...



3. Rendering
….. Of course….

● Your application should provide (simple!) interactive navigation in the scene
○ Don’t put too much effort into that. Setting the camera to interesting viewpoints for example is 

also sufficient

● What is not important
○ Tuned graphics effects (other lectures handle this well ;))



Benchmarks
● Check your optimization using representative parameters

○ For optimization data-structures most important parameter is: On/off
■ With and without view frustum culling

○ For trees
■ Depth (e.g. how long to subdivide)
■ Kd-Tree parameters

● Provide your benchmarks in the report
● Most important parameters should be be demonstrated at Abgabegespräch

○ Basis for discussion…

● Extra lecture on benchmarking

Don’t use debug builds and attached 
debuggers when benchmarking!!



First steps
● Up to 2 students per project team
● For teams of two project adapted project size
● We are happy to discuss your ideas before/during/after lectures
● Make sure to talk to the LV team if the project is OK (getting too much effort 

for such projects is easy ;))



Project proposal / registration
● Project proposal (max 1 page)

○ Short description: one liner
○ Your name/your team
○ Problem statement
○ Planned approach
○ Evaluation/benchmark methodology

● mail with project description and project team to rendEng@vrvis.at till 
11.11.2019

mailto:rendEng@vrvis.at


Final report/results
● Hand in (via email, 2 days before exam)
● 2 pages per student
● Extend proposal with

○ Actual approach/used algorithms taken (if different from proposal)
○ Benchmark results
○ Discussion explaining results

■ Expected or unexpected results? 

● The implementation (source code).
● If you want to show your result on our PC, provide a little description how to start it, so we can 

test it before the exam.
● Report and project will be discussed as part of the oral exam.
● Email to: rendEng@vrvis.at



Exam and test machine
● Appointments till 27.3.2020 (rendEng@vrvis.at)
● Email me with 3 possible dates/times 2 weeks before

○ Mo-Fr, 10-11:30, 14:00-16:30

● Email me your report+source code 2 days before the exam
● 1 question regarding the project, 2 questions from the lecture topics
● The exam is should be done in 10mins.
● If you don’t want to carry a laptop to the exam, send us instructions on how to 

run the program
○ We have a PC WIN10 and Arch Linux GTX980, and Radeon RX Vega

mailto:rendEng@vrvis.at


Programming environment
● You are free to choose whatever platform you want!!
● Using Aardvark reduces efforts for some tasks
● For other, rather low level tasks a custom application setup is more desirable

○ e.g. when using low level features such as vulkan generated commands…

● For aardvark users (but also project related questions) we provide support via 
gitter: https://gitter.im/aardvark-platform/RenderingEngineVU

https://gitter.im/aardvark-platform/RenderingEngineVU


Inspirations for cool projects
● Culling on the GPU using compute shaders to generate

○ Instance buffers (matrices, used for instancing geometry)
○ Indirect buffers
○ Command buffers (vulkan)

● Culling on the CPU
● Multithreaded scene traversal (UE4 style)
● Picking huge scenes
● Low level OpenGL hackery in order to handle huge scenes

….
● Rendering scenes with “huge” number of lights
● Accelerating rendering via (GPU?) occlusion queries



Meet us at: https://gitter.im/aardvark-platform/RenderingEngineVU
https://c1.staticflickr.com/9/8589/15821362994_25efd36e58_z.jpg01



Further reading
● OpenGL Scene Rendering Techniques: 

http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-
Techniques.pdf

● Siggraph BOF, interesting porting work of game engine developers for vulkan: 
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul
16.pdf

● Approaching the Zero Driver Overhead (AZDO talk), Everitt, Sellers, McDonald, Foley, Siggraph, GDC 2014, 
https://de.slideshare.net/CassEveritt/approaching-zero-driver-overhead

● OpenGL Efficiency: AZDO overview talk, 
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf

● Optimizing the Graphics Pipeline with Compute, Wihlidal (Frostbite) 2016, 
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf 

http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://de.slideshare.net/CassEveritt/approaching-zero-driver-overhead
https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf
https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf

