VU Entwurf und Programmierung einer
Rendering-Engine

Organization

186.166 - WS 2.0

Harald Steinlechner, Georg Haaser, Christian Luksch, Stefan Maierhofer

Organization

e \orlesung
o Monday, 16:15 (s.t.) - 17:45
o Seminarraum 186, Institut fur Computer Graphik und Algorithmen
o ECTS efforts: approx half/half

e Ubung
o As a project, implement a module for a rendering engine
o Topics can be chosen by students

Student project

e Extra slides for “Ubungsteil”

e Similar to previous years:
o Rendering and optimization a scene. This includes:
m Geometry processing (e.g. Terrain generation, Meshes,...) or model loading
m Acceleration data structure or optimization algorithm
m Rendering of the scene

Exam

e Hand in (per email) the project + a written report
o Till 2 days before the exam date
o Written report (2-4 pages)
m Description of the project
m Description of the used techniques
m Analysis of the performance

e Oral exam
o End of January till end of march
m Email with 2 possible dates to rendEng@vrvis.at
o Demo of the project
o Two questions of the lecture content
m Details not that important, but understanding of the topics.

mailto:rendEng@vrvis.at

Contact

Harald Steinlechner

VRVis Research Center, Donau-City-Strale 11

rendEng@vrvis.at

Register in TISS

When projects/team is fixed: write email with task description to hs@vrvis.at

VO Homepage

e https://www.cg.tuwien.ac.at/courses/RendEng/

mailto:rendEng@vrvis.at

The mission of a rendering engine....

e Provide easy to use software components...
e which can be used to solve rendering engine tasks (like a toolbox)

In order to accomplish this, we need:

Algorithms and Datastructures

Graphics APl & Hardware Insights
APl design

Domain specific languages (e.g. scene description)

After the lecture you are able to...

Analyse specific use case for rendering engines

Structure reusable parts of a rendering engine

Evaluate techniques and their trade offs including benchmarks
Apply lighting and global illumination techniques to applications

Content of this LV

Requirements for the design of rendering engines

Hardware and Graphics APIls (OpenGL, Direct3D, Vulkan,..)

Scene Representation (Scene graphs, display lists, command buffers,...)

Static and Dynamic Data (Incremental Update Techniques)

Optimizations (Caching, Culling, Level of Detail, Bounding Volume

Hierarchies, Just-In-Time Optimization)

Resource Management

e Domain Specific Languages (HLSL, Spark, FShade, Semantic Scene
Graph,..)

e Reusable Components/Design for Rendering Engines

About the LV team & Aardvark

e LV Team is basically the aardvark core development team.

e Active development of the aardvark rendering engine since 2006 with Robert
F. Tobler.

e Roberts mission: easy to use but high-performance rendering engine.

e Aardvark - An Advanced Rapid Development Visualization and Rendering

Kernel
o Heavily used in research + industry projects

Pinned repositories

aardvark.base

Aardvark is an open-source platform for visual

computing, real-time graphics and visualization. This
repository is the basis for most platform libraries and

provides basic functionality such as dat...

®c: k712 ¥e

walkthrough

A walk through aardvark platform packages.

Additionally to repository specific examples (e.g.

aardvark.rendering) this repository shows the

interplay of various aardvark platform packages.

®r: %10

aardvark.rendering

The dependency-aware, high-performance aardvark

rendering engine. This repo is part of aardvark - an

open-source platform for visual computing, real-time

graphics and visualization.

®r: K43 Z¥7

template

project template for aardvark projects with build
script for bootstrapping new aardvark projects
(including all necessary dependencies).

®r: K4 ¥3

Customize pinned repositories

aardvark.media

Functional (ELM style) front-end and Ul for aardvark,
an open-source platform for visual computing, real-

time graphics and visualization.

®r: 20 Y7

aardvark.docs

Simple examples combining multiple packages
provided by the aardvark platform. Each platform

repository comes with separate examples -- here we

collect overarching examples using for example
aardva...

®r: *76 ¥4

Seealso

https://aardvarkians.com/

https://aardvarkians.com/

Some of our projects

Live demo

Managed language Clean Semantics for

for rendering Rendering
engine?
Approx. 2002 Approx. 2005 Approx. 2008
Till approx 2002 Ave (C++) Aardvark (C#) Aardvark 2008 (C#)
Aart (Obj C) Traditional Scene Graph Semantic Scene Graph [Tobler 2011]
Usability:
Aardvark 2010 Performancel Aardvark 2015 e Domain Specific Languages

Composable Shaders e Flexibility

[Haaser et al. 2014]

Towards Incremental Computation,

Attribute Grammars for Incremental Scene Graph Rendering

Lazy Incremental Computation
For efficient Scene Graph
Rendering [Worister et al. 2013]

Approx 2016 Fast and flexible! Usability, Remote Rendering,
aardvark.rendering Aardvark in the browser
aardvark.base 2017

General purpose incremental Computation, Vulkan, ELM architecture,

Incremental Rendering VM [Haaser 2015] Aardvark goes web

Challenges

e Size of data-sets
o Often requires out of core approaches

e Dynamic and static geometry
e Efficient graphics hardware utilization

e Support for special effects
o APIs for accessing special hardware features
o Provide mechanisms to specify for example shaders and post processing

e Many different application areas: Focus on real-time applications
o Terrain, laserscan, reconstructed data, game levels

Architecture and planning

Light simulation (Global Illumination)

Games

Interactive Editing applications

O O O O

Design Space

How to structure a rendering engine

What interfaces and modules useful

How to transfer data

How to manage memory (we have GPU and main memory)
How to store data in memory (e.g. for efficiency reasons)
How to optimize, how to make use of multiple CPU cores

Graphics hardware specific questions

e \What to compute in shaders
e \What to compute on CPU (in what precision?)

What to expect

e Tools/Algorithms/Concepts to implement rendering engines
e Hardware/Graphics APl insights
e How to structure rendering engine into modules

o (Low cost) abstraction techniques
o Compiler techniques

e Important data-structures in practise
o k-d-Trees, Octrees

e Performance considerations
o Optimizations (how to pack buffers etc)
o Costs of programming language abstractions (e.g. can we afford virtual function calls?)

e How to manage large scenes (performance + memory)
e Approaches for implementing lighting/material systems

What to expect

e Dependencies and incremental computation for rendering engines
o Efficient ways to handle dynamic data

e Scene representation
e Rendering of big scenes

o Terrain-rendering, rendering precision, caches
e Parallelization for rendering engines

e Not content of this LV:

o Graphics programming tutorial
o How to use existing engines
o How to implement concrete tooling (e.g. level editor, material editor)

Timeline

14.10.2019 - Organization, Introduction & Motivation

21.10.2019 - Scene representation

28.10.2019 - Optimization techniques for rendering engines

04.11.2019 - Data and rendering engines

11.11.2019 - Benchmarking, Representing fully dynamic scenes, Aardvark Tutorial
18.11.2019 - Optimization techniques for fully dynamic scenes

25.11.2019 - Domain Specific Languages for Rendering Engines, Composable Shaders
02.12.2019 - Materials and Lights for Rendering Engines,

09.12.2019 - Shading System and Global lllumination

o Including lightmap packing, instant radiosity, deferred rendering
techniques,..
e 16.12.2019 - Questions regarding the lecture/project

Questions

