
18.06.2010                              Messenger / Muehlich                         LU Computergraphik 2

off BEAT
Peter Messenger, 0327186, messenger.mine@gmail.com

Matthias Mühlich, 0308771, mmuehlich@gmx.li

An outer space audio game                              

Short description

Off  Beat is  an outer space audio game where the player flies  along a path through a field of 
obstacles and tries to hit nodes that appear in the rhythm of the music. Each node that was hit on 
time explodes and rewards the player with points according his timing, missed objects reduce the 
high-score.

Short walk-through: 

The game is started by pressing “P” (play / pause), immediately the player is set on the track and 
the music starts to play. Navigation is done by the computer, the only task is to click on the stars / 
spheres that appear when they are on-beat (indicated by green color). Targets that were hit too 
early cannot be hit again and will count as missed objects. 

Controls:

For the normal game-play, only the mouse is needed and “P” will start / pause the game. 

Other controls are:
• Light position:

◦ F move light left
◦ H move light right
◦ T move light away (z-direction)
◦ G move light to camera (z-direction)
◦ N move light down
◦ Y move light up

• Cameras:
◦ C changes the current camera:

▪ three cameras are available, the level can be played using all three cameras however 
camera positions within the levels are fixed. When pause is set, the cameras can be 
moved by 
• A-S-D-W and E-X (up down, only on some cameras)
• mouse movements (only on some cameras)
• each one of the three cameras will remember its position, when switching from 

off BEAT – Messenger / Muehlich – CG II 2010



camera to camera the old position will be reused
• Debug functions:

◦ 9 saves the whole scene to a file – is disabled to avoid overwriting the existing file
• Rendering:

◦ F1 displays some help information
◦ F2 toggles frame-rate information
◦ F3 switches wireframe on or off
◦ F4 switches between bilinear texture filtering and nearest neighbor interpolation
◦ F5 mip-mapping:  no  mip-mapping,  nearest  neighbor  mip-mapping  and  linear 

interpolated mip-mapping
◦ F7 lock framerate on 60 fps
◦ F8 view frustum culling:

▪ no view frustum culling
▪ culling of the level geometry (the boxes) only on near and far Z
▪ culling of the level geometry against the view frustum
▪ culling of the level geometry and the objects of the scenegraph against near and far Z
▪ culling  of  the level  geometry  and the objects  of  the scenegraph against  the view 

frustum
◦ F9 transparency on / off

• Turn features on / off
◦ 0 turn off mouse picking
◦ 1 turn off main rendering
◦ 2 turn off lightshafts
◦ 3 turn off bloom
◦ 4 turn off environment mapping (currently disabled)
◦ 5 turn off lens flares
◦ 6 hide the crosshair cursor
◦ 7 turn off particle systems

Objects and animated objects

The current scene still contains some debug objects that can easily be exchanged for more complex 
models. However, the simple shapes of the objects create a very special atmosphere, therefore these 
were not changed yet. 

All objects along the level are environment mapped, the targets itself are key frame animated. 

Visibility and view frustum culling

The scene contains three types of geometry: Any number of objects can be loaded using an xml-like 
scene description file and targets are placed along the camera path according the beats of the 
music. Both groups of objects are controlled by a scenegraph which takes care of updates, drawing 
and transformation order. 

The geometry along the camera path consists of objects that are not contained in the scenegraph 
but are instances of one single object that is moved and scaled. This approach was chosen because 
drawing the whole scene geometry using the scenegraph resulted in very bad performance. This 
performance could not even be reduced by view frustum culling on the scenegraph. 

Therefore different types of view frustum culling are implemented:

off BEAT – Messenger / Muehlich – CG II 2010



• Objects of the level geometry are automatically removed when the player has passed them 
by a certain distance. Since the player will on a spline along the z-axis this is no problem for 
the normal game, but may be disturbing when the debug camera is used to turn around and 
observe the level behind the player. However, this culling presents a large performance gain 
and does not disturb the normal gameplay. 

• Additionally, the level geometry can be culled against the near and far Z-plane. If this culling 
is enabled, the objects behind the camera are first culled and after some distance deleted as 
above.  Since speed is  more important  than exact  culling,  the objects  centers  are used for 
culling, not the bounding boxes or spheres, using the bounding spheres gave no performance 
gain but some additional overhead in calculating the bounding spheres and testing them 
against the frustum. 

• The geometry can also be culled against  the whole frustum. However,  since this  increases 
performance only minimal, the culling is implemented as demo culling and the culling planes 
are set slightly smaller than the view frustum, so the culling becomes visible. Again, this culling 
uses object centers since the bounding-sphere / box calculation did not bring any performance 
improvements. 

• Objects of the scenegraph can be culled against the near and far Z plane and the whole 
frustum just as the level geometry. In the scenegraph, objects can be grouped to be culled 
together. 

Transparency

Blending is a central part of the project. Almost all textures, especially those used for particle effects and 
simmilar,  contain  0  alpha  values.  Between  renders,  scenes  are  blended  using  either 
glBlendFunc(GL_SRC_ALPHA,  GL_ONE);  (particle  systems)  or  glBlendFunc(GL_SRC_ALPHA, 
GL_ONE_MINUS_SRC_ALPHA) (normal blending). For some particle systems depth testing was disabled 
in lieu of performing a costly sorting function.

Effects

The following effects were implemented:

Environment mapping:

Simple Cubemapping was implemented. A static cube map texture is used (not generated on the 
fly). The Cube map texture is loaded onto the graphics card, then bound before an object with 
environment mapping enabled is rendered. In our game Demo it is used on the track cubes. It is 
implemented very discretely (blend factor over existing texture 0.5) . Implementation was partly 
based  on  the  tutorial  found  at  ozone3d.net. 
http://www.ozone3d.net/tutorials/glsl_texturing_p04.php 

off BEAT – Messenger / Muehlich – CG II 2010

http://www.ozone3d.net/tutorials/glsl_texturing_p04.php


lens flares:
The lens flare effect  is  implemented using the geometry shader.  Similar  to our particle systems, 
quads  are generated and the selected shapes  are taken from a sprite  sheet.  In  this  case three 
textures were used to generate the effect. Positions are calculated in screen space, using the light 
position and the center of the screen.

Bloom:
The  bloom  effect  is  a  postprocessing  effect.  The  lighted  scene  is  rendered  into  a  scaled  down 
viewport framebuffer (factor 8). The downscaled image is then gaussian blurred with a 5x5 kernel.
The blurred framebuffer image is then drawn on a 1x1 plane in the full viewport resolution and then 
blended over the full render of the scene. This effect was mainly based on the nVida GPU gems 
description of the glow effect.

off BEAT – Messenger / Muehlich – CG II 2010



lightshafts:

Lightshafts is  the most performance intensive effect in this project.  The scene is  rendered at half 
resolution with a minimal shader. All objects are rendered black except the light, represented by a 
sphere,  which  is  rendered  white.  Every  pixel  is  the  sampled  towards  the  light  source,  adding 
weighted color (white or black) along the way. The result are lines which are brighter the closer they 
are to the white light source. The sampling iterations are very costly and were set at 70 per pixel for 
best performance/quality.
This effect was based on the GPU gems article on light scattering as well as the implementation of 
Fabien Sanglard.

http://www.fabiensanglard.net/lightScattering/index.php 

particle systems:

Three types of particle systems were implemented, of which only 2 are visible in the final game 
demo. All particle systems are implemented entirely on the GPU, which provides for a huge speed 

off BEAT – Messenger / Muehlich – CG II 2010

http://www.fabiensanglard.net/lightScattering/index.php


boost but makes them less flexible.
The first system is the explosion particle system. All systems can be bound to other objects and will 
then take over their  position.  The particles'  positions are generated randomly along with a few 
properties, most significantly the velocity property which provides the vector along which a particle 
will travel. On the GPU each particle is then moved along this vector based on the update time. The 
directions are randomly generated then normalized vectors,  meaning the particles  expand in  a 
spherical behavior.
The second type of particle system expands on the first by also allowing for animated particles. The 
sprite sheet is traversed according to a timing scheme and is looped. This provides an interesting 
effect. This system was not implemented, mainly because we could not acquire a proper animation 
and had no time to generate one ourselves.
The  third system is  based on description of  “imposters”  in  the “Real-time Rendering”  (Akenine-
Moeller et al. ). Basically, an object is rendered in real time to a frame-buffer, which is then used to 
texture each particle. This object is lit with the same light source as the scene, but the light uses a 
fixed z-value. This means, the object can be animated an lit by the same light source as the rest of 
the scene once, but then can be displayed many (10'000 times in our case) at a fraction of the cost it 
would use to render each individual object. The effect is interesting and could be optimized using 
more objects in smaller adjacent cubical cells.

Some Impelementation details

This section describes some implementation details. 

scene description:

Although the current scene is still a testscene (which will be replaced by a more complex scene within 
the next week), the surrounding scene can be loaded and saved into a xml-like file which allows 
easier modification and storage of a scene. A future version of the game could easily implement a 
scene editor which generates these files so players can create their own scene and share them. The 
scene file represents both, the structure of the scenegraph as well as the structure of the objects, 
some example files can be found under /Scenes/. 

scenegraph:

The scene description is used to create a scenegraph which updates and draws itself. The scenegraph 
is also capable of handling view frustum culling. This was explained in great detail in the first hand 
in documentation.

object libraries:

VBOS, textures, shaders and other resources are stored in libraries where they can be queried easily.

level object generation: 

The level objects are generated randomly along the track which is defined by a spline. The Basic 
idea is similar to a particle system. The Level uses a constant amount of elements (1000) which it 
adjust along the constant z-axis. This method of culling proved to be by far the most efficient way of 
rendering the level. This method of level generation also results in a compact looking track without 
the necessity of having to model the whole track by hand. Additionally, this method would allow for 
quick adjustment to another theme song, as the length of the track is directly based on the length of 
the song. The individual control points for the catmull rom spline are set by hand (30 control points).

off BEAT – Messenger / Muehlich – CG II 2010



Libraries / Tools:

• fmod (sound)
• glew (gl extensions)
• glfw (gl window management)
• glm (math library)

All objects were created either manually or using blender. 

off BEAT – Messenger / Muehlich – CG II 2010


