
Documentation Loch Ness Safari (Submission 2)

Gameplay

As a diver you dive through Loch Ness underwater. It is possible to "take a photo" of Nessie (left

Mouse Key). When the gamer does that, the distance between Nessie and the Camera is

checked. It needs to be lower than a certain threshold (4) for the photo to be of sufficient

quality. Furthermore, Nessie needs to be in the View Frustum of the Camera. If such a good

photo is achieved, the game is won (as displayed on the text console). In the beginning, the

gamer has 5 photos left to take on the SD card. If all of them are misses, the game is lost. By

activating the flash light, a higher distance (threshold * 1.5) is acceptable.

From time to time a bonus SD card can float down through the water. If close enough to the

bonus SD card, the gamer can pick it up (by pressing E). This results in having more photos left.

By pressing the space key the "under water flash light" can be toggled on/off. It can only remain

lit for a certain amount of time. If this time is over (times are accumulated correctly, if it is

toggled off in between), it is automatically switched off and cannot be toggled on again.

Features:

• The objects move in a randomized way with their own (very simple) artificial intelligence

(This concerns Nessie and the fish underwater, plus some rubber ducks on the surface of

the lake).

• In both game end cases (winning and losing) the game stops. The command line output

as well as graphical text output gives feedback whether a photo was sufficient or not.

(The stopped game represents the final photo.)

• From time to time a bonus SD card comes floating from the top to the bottom. It

remains lying there for some seconds, before falling down again at another, randomized,

position.

• When the bonus SD card is picked up by the diver, it vanishes and doesn't appear again

in the game.

• Every few seconds a sonar sound helps with finding Nessie: The louder the sound, the

closer the proximity to the monster.

Effects

Shadow Mapping
The effect was implemented, using a depth map via two rendering passes and also using PCF to

counter all artifacts. The shadows can be seen for example when fish are swimming above the

ground. Shadow Mapping was implemented according to the following Tutorial:

http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping

Caustics
A caustics effect was implemented using animated textures, that were projected to the ground.
Therefore, the effect is a combination of animated textures and projected textures.
The texture images used for the animated texture are downloaded from:
http://www.dgp.toronto.edu/~stam/reality/Research/PeriodicCaustics/index.html

For implementing projected textures the following articles were used:
https://www.opengl.org/archives/resources/code/samples/mjktips/projtex/index.html
http://www.ozone3d.net/tutorials/glsl_texturing_p08.php

Lightshafts
A lightshafts effect (volumetric light scattering) was implemented as a post processing effect. It
can be toggled on/off by pressing F7. The effect can be seen when the camera is tilted upwards
to the sky / light source, especially when swimming closer to the top.
The effect is based on:
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html
http://fabiensanglard.net/lightScattering/
Variation to the algorithm: The effect is only being activated when the sun is within (or close to)

the view frustrum.

Spotlight
In the spotlight effect the surface is limited with cones (outer and inner) for a smooth transition.
This effect can be activated by pressing SPACE. (Remember that the usage of the spotlight is
limited - it can only be turned on for a total of a few seconds!)
References:
http://learnopengl.com/#!Lighting/Light-casters

Additional Features / Implementation Details

Lighting and Materials
The scene is illuminated by a main light source coming from the direction (0, 20, -1).
There are two different materials in the game, mostly differing in their shininess. Nessie and the
bonus object (SD-Card floating from the top) on the one hand reflect the light in a shinier way
than the ground on the other hand.
Additionally, a spotlight exists that can be toggled by pressing Space.
The implemented shader uses a Blinn-Phong Lighting Model.

http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.dgp.toronto.edu/~stam/reality/Research/PeriodicCaustics/index.html
https://www.opengl.org/archives/resources/code/samples/mjktips/projtex/index.html
http://www.ozone3d.net/tutorials/glsl_texturing_p08.php
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html
http://fabiensanglard.net/lightScattering/
http://learnopengl.com/#!Lighting/Light-casters

Fog
The whole scene is affected by a fog effect. This effect is calculated as a linear fog interpolation
in dependence of the view space.

Animated Objects
A few different kinds of fish exist within the lake. Their back part (flapper) is animated using

hierarchical modelling. The faster a fish is moving, the faster the flapper will flap.

Frustum Culling
View Frustum Culling was implemented using the geometrical approach. It can be toggled on/off
by pressing F8.
References:
http://www.lighthouse3d.com/tutorials/view-frustum-culling/

Transparency
The surface of the lake consists in a transparent (animated) texture.

Collision Detection
Collision Detection is implemented with a Height Map. The Height Map itself was created in
Blender by applying a height-dependant texture and rendering from above in an orthographic
projection. The height map image was then imported using DevIL (as all textures), read in and
collision checks implemented manually.

Controls
• Change the viewing direction via mouse movement
• Move forward, left, backward and right with W, A, S, D
• Activate the "underwater flash light" with M or Space
• Take a photo with the left mouse button or P
• Pick up bonus objects (the SD card) by pressing E
• F2 - Frame Time on/off
• F3 - Wire Frame on/off
• F4 - Textur-Sampling-Quality: Nearest Neighbor/Bilinear
• F5 - Mip Mapping-Quality: Off/Nearest Neighbor/Linear
• F6 - Render depth map used for shadow mapping
• F7 - Lightshafts on/off
• F8 - Viewfrustum-Culling on/off
• F9 - Transparency on/off

Libraries used
• GLFW: http://www.glfw.org/

• GLEW: http://glew.sourceforge.net/

• Assimp: http://assimp.sourceforge.net/

• DevIL: http://openil.sourceforge.net/

http://www.lighthouse3d.com/tutorials/view-frustum-culling/
http://www.glfw.org/
http://glew.sourceforge.net/
http://assimp.sourceforge.net/
http://openil.sourceforge.net/

• FreeType: https://www.freetype.org/

• irrKlang: http://www.ambiera.com/irrklang

Resources
The model for Nessie is from: http://tf3dm.com/3d-model/an-16082.html

All other models were created manually using blender.

Underwater Sound and Sonar Sound recorded by Mike Koenig (Attribution 3.0 License):
http://soundbible.com/1660-Underwater-Pool.html
http://soundbible.com/1183-Sonar.html

Additional References:

Text Rendering with FreeType:

http://www.learnopengl.com/#!In-Practice/Text-Rendering

Camera Transformations, Controls:

http://learnopengl.com/#!Getting-started/Camera

https://gist.github.com/23ars/4545671

Lighting / Materials:

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/

http://in2gpu.com/2014/06/19/lighting-vertex-fragment-shader/

Coordinate Transformations, etc.:

https://www.opengl.org/archives/resources/faq/technical/transform HYPERLINK

"https://www.opengl.org/archives/resources/faq/technical/transformations.htm" HYPERLINK

"https://www.opengl.org/archives/resources/faq/technical/transformations.htm" HYPERLINK

"https://www.opengl.org/archives/resources/faq/technical/transformations.htm"ations.htm

https://www.freetype.org/
http://www.ambiera.com/irrklang
http://tf3dm.com/3d-model/an-16082.html
http://soundbible.com/1660-Underwater-Pool.html
http://soundbible.com/1183-Sonar.html
http://www.learnopengl.com/#!In-Practice/Text-Rendering
http://learnopengl.com/#!Getting-started/Camera
https://gist.github.com/23ars/4545671
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/
http://in2gpu.com/2014/06/19/lighting-vertex-fragment-shader/
https://www.opengl.org/archives/resources/faq/technical/transformations.htm
https://www.opengl.org/archives/resources/faq/technical/transformations.htm
https://www.opengl.org/archives/resources/faq/technical/transformations.htm
https://www.opengl.org/archives/resources/faq/technical/transformations.htm

