Swarm

Submission 2 — Documentation

Configuration

The game starts in 1024x768 in windowed mode by default. To use different settings commandline-
arguments are required

e.g. 'Swarm.exe 1920 1080 1' will run the game in high-resolution fullscreen mode.

Implementation

Gameplay

The player controls a swarm of fish and has to pass check points(green pyramids) before reaching
the goal (green cube). One can adjust direction and speed of the swarm via mouse movement and
scrolling, respectively. The enemy sharks kill members of the swarm on contact and have a patrol
and attack mode. After entering the proximity of a shark, it stops patrolling and moves towards the
player for a certain time. After that there is a short cool down state such that the shark returns to the
patrol path and ignores the player. In addition the water surface level will slowly lower over time, to
make it more diffucult to maneuver past the sharks (passing the water surface also kills a fish).

The swarm movement is based on real swarm logic in nature (boids framework). Each fish keeps
track of its nearest neighbors and tries to stay in a feel-good distance to them. On the start of the
game the fish try to find their optimal position starting from a given initial setup. Note that it can
happen that the swarm loses cohesion when one accelarates too fast in the beginning. In this case,
one has to slow down a little bit to allow the fish to rearrange.

Controls

The movement direction of the swarm is controlled via mouse movement. The speed is adjusted
with the mouse wheel. Hitting escape leads to leaving the game. The F1-9 buttons can be used to
adapt the visualization according key-mapping chart from the lecture.

In addition F6 toggles the frametime-limit (default is 120FPS) and F7 shows the number of
rendered objects (to vizualise the effects of view-frustum-culling).

Text Status messages are shown on the screen when a F-button is pressed.

Lighting

The Scene is illuminated by a single directional light source. All objects have distinct specular light-
settings and 'react' slightly different to the incoming light. Shadows are cast in the light-source's
direction.

Effects
* Water surface tesselation LOD (2 effect points) : The surface of the sea is modelled by a

Philipp Wissgott (0125486), Andreas Winkler (1129264) 1/3

tessellated mesh. The functional wave information is given by a sum of sine functions where
each wave moves in a certain direction (based on
http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html). There are three
tessellation levels (the levels can be seen very good in wireframe mode when you move
close to the surface). The implementation is done with tessallation control and evaluation
shaders such that the vertex shader just passes on the positions/normals/uvs, the control
shader computes view to position distances and sets the tessallation levels which are used in
the evaluation shader to compute the sum of sines.

* Shadow Maps (with PCF) (1.5 effect points): The scene's depth information is rendered in
lower resolution into a framebuffer using a different projection matrix from the sun's
direction. This resulting texture is then used in a second render-pass alongside this
projection-matrix. In this pass the scene is rendered like normal, but the shadow map (and
the calculated coordinates) are used to darken the affected regions of the scene. Percentage
close filtering is used to create smoother shadows.

Our implementation mainly follows the slides from the lecture as well as the tutorial at
http://www.opengl-tutorial.org

* Bloom (1 effect point): The scene is rendered in lower resolution into a framebuffer (using
the regular view and projection) using a threshold filter in the fragment-shader to create a
greyscale texture with increased contrast to separate the bright parts of the image. This
texture is then rendered another two times into a framebuffer using a shader that applies a
blur-effect. (fractions of neighboring pixel's colors are added to each pixel/fragment) The
resulting blurred glow-map is then (after the whole scene was rendered normally) used as
texture on a screen-sized quad that is rendered on top of the scene using a shader that only
shows the bright areas. The effect can be seen on the sun as well as most specular highlights.
(The best way to show this effect is to move the swarm under the sun and look towards it).

Our implementation is based on the guidelines from the lecture as well as the tutorial at
http://prideout.net/archive/bloom/

Complex Objects

All Objects in the game have UV coordinates and textures. All complex models (Shark, Fish,
Rocks) were hand created in 3DSmax (including UV coordinates) and are loaded when the game
starts using Assetlmporter. Custom (hand-created) textures are used for the Sharks and Fish to
match the UV unwrap.

The ground surface is loaded from a heightmap image, and transformed into a mesh at startup by a
custom algorithm.

Animated Objects

The sharks are composed of seperate meshes: the 3 fins are 'attached' to the main body, and slightly
rotate in constant intervals. This should be clearly visible when aproaching a shark.

View-Frustrum-Culling

All objects in the scene (excluding some fixed level elements) are only rendered when inside the
view frustum. For this, each frame the planes of the frustum are calculated and all objects are
checked (by distance/radius) if they are outside those planes. The view-frustum-culling can be
toggled on and off via the F8-key

Transparency

Philipp Wissgott (0125486), Andreas Winkler (1129264) 2/3

Transparency is used in various forms in this game. The sun (a view-aligned quad rendered in the
sky) uses an alpha level calculated from its texture-color values inside the fragment shader. The
checkpoints and the goal area have a 'global' transparency value, that is addionally multiplied with
a time-based sinus function to create a pulse effect.

The water surface uses a fixed alpha value.

The Bloom effect renders a textured quad on top of the scene, which has it's alpha values based on
the texture's brightness.

Transparency can be toggled with the F9-key. This also disables bloom to prevent the whole screen
to be covered from a non-transparent glow map.

Sound

All sounds are handled by the Irrklang library. We play a looping 2D ambient sound, some triggered
2D sound effects (checkpoint; shark attack) and a 3D music that 'follows' the sharks around.

Collission Detection

Collission Detections is handled by our own code and supports bounding boxes.

Resources

All used 3D-models and their textures are self-created. The ground texture is from the Total
Textures repository and was slightly edited, the water texture is from another image library. Models
are in .OBJ format and loaded with Assetlmporter. The used textures are bitmap-files that are
loaded via an image library (Freelmage).

The sounds are mixed together using sound-files from various online-libraries. The music in use is
from the movie Jaws. Sounds are loaded and played via the Irrklang library.

Textures were created/edited in Adobe Photoshop, 3D-models were created in Autodesk 3DSmax,
sounds were mixed in Audacity.

Additional Libraries

The following libraries are used:

GLFW - http://www.glfw.org/ - Open GL window functions

GLEW - http://glew.sourceforge.net/ - Open GLextension

GLM - http://glm.g-truc.net/ - Mathematics

Freelmage - http://freeimage.sourceforge.net/ - Image Loading

Assimp - http://assimp.sourceforge.net/ - Model Loading

IrrKlang — http://www.ambiera.com/irrklang/ - Sound

OpenGLUT - http://openglut.sourceforge.net/ - Text Rendering

Philipp Wissgott (0125486), Andreas Winkler (1129264) 3/3

http://www.glfw.org/
http://openglut.sourceforge.net/
http://www.ambiera.com/irrklang/
http://assimp.sourceforge.net/
http://freeimage.sourceforge.net/
http://glm.g-truc.net/
http://glew.sourceforge.net/

	Implementation
	Additional Libraries

